
Algorithms for Packing and Scheduling
Second Year Progress Report

Student: Mihai Burcea
Supervisors: Prudence W.H. Wong and Russell Martin

Advisors: Leszek A. Gąsieniec, Mingyu Guo, and Piotr Krysta

Department of Computer Science, University of Liverpool, UK
m.burcea@liverpool.ac.uk

Abstract. This is the Second Year Progress Report for the “Algorithms
for Packing and Scheduling” Ph.D. project. In this report, we give the
aims of the project, a summary of the current results obtained, we address
the questions raised in the Postgraduate Workshop, and we conclude with
possible future work and a timetabled research plan.
The project is concerned with the study, design, and analysis, of de-
terministic online and offline algorithms. We present the current results
obtained for packing and scheduling algorithms. More specifically, for the
online dynamic bin packing problem we first present a new lower bound
of 8/3 ∼ 2.666 for the one-dimensional model. Secondly, we give algo-
rithms for the two- and three-dimensional model when the input consists
of unit fraction (lengths are 1

k
, for some integer k ≥ 1) and power fraction

(lengths are 1
2k , for some integer k ≥ 0) items. For scheduling algorithms,

we present a polynomial time optimal offline algorithm for minimizing
the electricity cost in Smart Grid. We consider the model in which the
power requirement and the duration a request needs service are both
unit-size. A possible future direction is to consider a generalization of
this model.

1 Aims of the project

This project is concerned with the study of algorithms for packing and schedul-
ing. The aims of the project are the study of existing algorithms for packing
and scheduling problems, design and analysis of improved algorithms for these
problems, formulation of new problems for scheduling, and possibly experimen-
tal studies for some of the problems. In particular, for packing problems we look
at the online dynamic bin packing problem, while for scheduling problems we
consider an offline problem where we aim to minimize the total electricity cost
in Smart Grid.

2 Summary of results

In this section, we introduce the two types of problems we consider, for online
packing algorithms and for an offline scheduling algorithm. For both types, we
give an introduction to the problem and summarize the results obtained.

2 Mihai Burcea

2.1 The Bin Packing Problem

Bin packing is an NP-hard [15] classical combinatorial optimization problem
that has been studied since the early 70’s and continues to attract researchers’
attention (see [9, 10, 13]). The problem was first studied in one dimension (1-
D), and has been extended to multiple dimensions (d-D, where d ≥ 1). In d-D
packing, the bins have lengths all equal to 1, while items are of lengths in (0, 1]
in each dimension. The objective of the problem is to pack the items into a
minimum number of unit-sized bins such that the items do not overlap and
do not exceed the boundary of the bin. The items are oriented and cannot be
rotated.

We look at the online dynamic setting, where the online setting means that
items arrive over time, while their lengths and arrival times are not known un-
til the items arrive. The dynamic setting, introduced by Coffman, Garey, and
Johnson [18], means that the items may depart at arbitrary times. Note that
the departure times are also not known until these occur. The items arrive over
time, reside for some period of time, and may depart at arbitrary times. Each
item must be packed to a bin from its arrival to its departure. Migration to
another bin is not allowed, yet rearrangement of items within a bin is allowed.
The objective is to minimize the maximum number of bins used over all time.

The performance of an online algorithm is measured using competitive analy-
sis [4]. Consider any online algorithm A. Given an input I, let OPT (I) and A(I)
be the maximum number of bins used by the optimal offline algorithm and A,
respectively. Algorithm A is said to be c-competitive if there exists a constant b
such that A(I) ≤ cOPT (I) + b for all I.

An 8/3 Lower Bound for Online Dynamic Bin Packing

We study the one-dimensional online dynamic bin packing problem and improve
the lower bound for any deterministic online algorithm from 2.5 [7] to 8/3 ∼
2.666. Previously, the lower bounds were 2.388 [12], improved to 2.428 [6] and
then 2.5 [7]. The new lower bound of 8/3 ∼ 2.666 makes a big step forward to
close the gap with the upper bound, which currently stands at 2.788 [12]. The
improvement stems from an adversarial sequence that forces an online algorithm
A to open 2s bins with items having a total size of s only and this can be adapted
appropriately regardless of the load of current bins opened by A.

We design two operations that release items of slightly increasing sizes and
items with complementary sizes. These operations make a more systematic ap-
proach to release items: the type of item sizes used in a later case is a superset
of those used in an earlier case. This is in contrast to the previous 2.5 lower
bound in [7] in which rather different sizes are used in different cases. We also
show that the new operations defined lead to a much easier proof for a 2.5 lower
bound.

The result is published in Proceedings of the 23rd International Symposium
on Algorithms and Computation (ISAAC), 2012, pp. 44–53. This is the first
attached paper as part of this report.

Algorithms for Packing and Scheduling – Second Year Report 3

Online Multi-dimensional Dynamic Bin Packing of Unit-Fraction
Items

While earlier studies on the online multi-dimensional dynamic bin packing prob-
lem had as input items with lengths real values in (0, 1], we focus our study on
unit fraction items and power fraction items. Unit fraction items are items with
lengths of the form 1

k , for some integer k. Bar-Noy et al. [2] initiated the study
of the unit fraction bin packing problem, a restricted version where all sizes of
items are of the form 1

k , for some integer k. The problem was motivated by
the window scheduling problem [1, 2]. We extend the study to two and three
dimensions, providing algorithms for which the competitive ratio reduces from
the general items case, i.e., items with lengths real values in (0, 1]. We also look
at power fraction items, where sizes are of the form 1

2k , for some integer k.
For unit fraction items, we give a scheme that divides the items into classes

and show that applying the first-fit algorithm to each class is 6.7850- and 21.6108-
competitive for 2-D and 3-D, respectively, unit fraction items. This is in contrast
to the 7.4842 and 22.4842 competitive ratios for 2-D and 3-D, respectively, that
would be obtained using only existing results for unit fraction items. For power
fraction items, we use the same approach and the competitive ratios reduce to
6.2455 and 20.0783 for 2-D and 3-D, respectively.

These results are published in Proceedings of the 8th International Conference
on Algorithms and Complexity (CIAC), 2013, pp. 85–96. This is the second
attached paper as part of this report.

2.2 Scheduling for Electricity Cost in Smart Grid

We study an offline scheduling problem arising in “demand response manage-
ment” in smart grid [16, 17, 21]. Consumers send in power requests with a flexible
set of timeslots during which their requests can be served. The smart grid uses in-
formation and communication technologies in an automated fashion to improve
the efficiency and reliability of production and distribution of electricity. The
grid controller, upon receiving power requests, schedules each request within the
specified duration. The electricity cost is measured by a convex function of the
load in each timeslot. The objective of the problem is to schedule all requests
with the minimum total electricity cost. As a first attempt, we consider a special
case in which the power requirement and the duration a request needs service
are both unit-size.

More formally, in this offline scheduling problem the input consists of a set of
unit-sized jobs J . The time is divided into integral timeslots T = {1, 2, 3, . . . , n}
and each job Ji ∈ J is associated with a set of feasible timeslots Ii ⊆ T , in which
it can be scheduled. In this model, each job Ji must be assigned to exactly one
feasible timeslot from Ii. The load `(t) of a timeslot t represents the total number
of jobs assigned to the timeslot. We consider a general convex cost function f
that measures the cost used in each timeslot t based on the load at t. The total
cost used is the sum of cost over time. Over all timeslots this is

∑
t∈T f(`(t)).

4 Mihai Burcea

The objective is to find an assignment of all jobs in J to feasible timeslots such
that the total cost is minimized.

We propose a polynomial time offline algorithm and show that it is optimal.
We show that the time complexity of the algorithm is O(|J |n(|J |+ n)), where
J is the set of jobs and n is the number of timeslots. We further show that if the
feasible timeslots for each job to be served forms a contiguous interval, we can
improve the time complexity to O(|J |n(log |J | + logn)) using dynamic range
minimum query data structure.

The result is to be submitted. This is the third attached paper as part of this
report.

3 Workshop feedback

We would like to thank the advisors for their feedback on the Postgraduate
Workshop. We address the questions raised, specifically other metrics to define
competitiveness of online algorithms, a note on the current lower bound for one-
dimensional online dynamic bin packing, and LP-based techniques for analyis of
online algorithms and for the offline algorithm.
Metrics for competitiveness. Usually, the performance of online algorithms is
measured using competitive analysis [4]. Using competitive analysis, we provide
a worst-case guarantee for the performance of an online algorithm. While this
guarantees the algorithms’ performance on any input, we recognize that other
metrics are useful. For online static bin packing, where items are permanent,
other benchmarks such as average case analysis have been studied [8, 11]. The
difference from worst-case analysis is that average case analysis relies on input
distribution and thus may not consider every possible input. Other ways to
measure competitiveness are using random order analysis [19], relative worst
order analysis [5], and advice complexity analysis [3, 14]. It may be an interesting
problem of its own to introduce other metrics for online dynamic bin packing.
Lower bound for one-dimensional online dynamic bin packing. The new
lower bound of 8/3 ∼ 2.666 is currently the best known for any deterministic
online algorithm. At the moment, we have not formally explored how to prove
that the technique used in the adversary cannot give a better lower bound.
Informally, however, it seems that the items we chose for the adversary are the
best for the technique we use. To illustrate this, suppose there are k existing
bins each containing exactly one item of size ε, for a small ε. Assuming that we
keep the maximum load (total size of items) to at most n, then we can release
n − εk items of sizes 1/4−iδ, for some integer i and small δ. Suppose we use
items of these sizes to open new bins. Then any algorithm will open at least
k/4 new bins as each existing of the k bins can pack at most three of these
items. We depart items such that each of the k bins contains exactly one ε-
item and each of the newly opened k/4 bins contains a 1/4−iδ-item. We can
release items of complementary sizes 3/4+iδ to open an additional k/4 new bins
(these processes take place in phases and can be constructed using Op-Inc and
Op-Comp from the paper). Thus, we have opened k/4 + k/4 = k/2 new bins

Algorithms for Packing and Scheduling – Second Year Report 5

using 1/4−iδ and 3/4+iδ-items. Contrastingly, if we use items of sizes 1/5−iδ
and 4/5+iδ we can open at most k/5+k/5 = 2k/5 new bins. Thus, using smaller
items we can only open fewer number of new bins. Using items of size 1/3−iδ
and 2/3+iδ will open more bins initially, but will not allow for the maximum
number of bins to be opened which is obtained by using 1/4−iδ, 3/4+iδ and
1/2−iδ, 1/2+iδ-items. On the other hand, using 1/3−iδ, 2/3+iδ and 1/2−iδ,
1/2+iδ- items would result in exceeding the maximum load of n, which would
not be a feasible adversary. It would be worthwhile to have a formal proof that
shows we can achieve the best lower bound with this technique if and only if we
use the combination of ε, 1/4− iδ, 1/2− iδ, 1/2 + iδ, 3/4 + iδ, and 1-items.
LP techniques for analysis. We have not yet considered LP techniques in
order to analyse the performance of online algorithms or to prove the optimality
of the offline scheduling algorithm. This may be a future direction.

4 Future work

In the Scheduling for Electricity Cost in Smart Grid paper, we have considered
the model in which the power requirement and the duration a request needs
service are both unit-size. One possible future direction is to generalize the offline
scheduling problem to the models where jobs have arbitrary power requirements
or arbitrary duration. When jobs have both arbitrary power requirements and
duration the problem is NP-Hard [20].

Other possible directions of work include further improvement on online dy-
namic bin packing of unit and power fraction items and a bandwidth allocation
problem in optical networks that aims to maximize the profit of a network owner
that schedules transmissions (jobs) between two points. For completeness, we
show the model we consider here. Note that this problem may be considered in
both offline and online settings.
Bandwidth allocation. We are given a sequence of jobs or paths J = {J1, J2,
. . . , Jn}. Each job Ji is associated with a start time si and end time ti, where
si < ti and the length of Ji is denoted by leni = ti−si. Without loss of generality,
we can assume that si and ti are positive integers. At any given time t there are a
minimum and maximum number of jobs present in the system, denoted by lmin

and lmax, respectively. In this setting and at any time t, we have some resources
available to be allocated to jobs. The amount of resources to be allocated is
represented by an integer W > 1 and we have that lmin ≤ lmax ≤ W . In other
words, we have at least as many resources to be allocated to the jobs at any time
as the number of jobs present.

The resources to be allocated (W) are represented by bandwidth. There are
W different bandwidth wavelengths to be assigned and each job must receive at
least one bandwidth wavelength, that is, for every job Ji, bi ≥ 1. The different
wavelengths can be thought of as distinct colours from the set {1, . . . ,W}. At
any time t, no two jobs can be assigned the same colour. Furthermore, once a
colour has been allocated to a job Ji it cannot be changed, i.e., it remains the

6 Mihai Burcea

same for the duration of [si, ti]. However, another job Jj with sj = ti can share
the same colour with Ji.

There are two different models for the bandwidth allocation problem. In the
first and less constrained model, for each job Ji that receives a bandwidth bi > 1,
it can be allocated any non-contiguous colours from the W available, as long as
the wavelengths have not been allocated to any other job for the duration of
[si, ti). Conversely, for the second model, the colours must be contiguous for
any job Ji with bi > 1. The objective of the problem is to maximize the profit
obtained by allocating bandwidth to all jobs in J . The profit of a job Ji is
pi = bi · leni. Thus, we aim to maximize

∑
Ji∈J pi.

Plan

Timeline Description of activities

Ye
ar

1

Months 1-2 Background reading: online algorithms analysis, energy-efficient
scheduling and routing algorithms.

Months 3-10 Contribution to two papers:
– P.W.H. Wong, F.C.C. Yung, and M. Burcea. An 8/3 Lower Bound
for Online Dynamic Bin Packing. ISAAC, 2012, pp. 44–53;
–M. Burcea, P.W.H. Wong, and F.C.C. Yung. Online Multi-dimen-
sional Dynamic Bin Packing of Unit-Fraction Items. CIAC, 2013,
pp. 85–96.

Months 11-12 Attempt at the windows scheduling problem, further reading on
energy-efficient scheduling and routing, and scheduling with a ther-
mal threshold.

Ye
ar

2

Months 1-2 Observations on the bandwidth allocation problem, problem defini-
tion, and consider the offline and online models.

Months 3-7 Contribution to one paper:
–M. Burcea, W.-K. Hon, H.-H. Liu, P.W.H. Wong, and D.K.Y. Yau.
Scheduling for Electricity Cost in Smart Grid. Submitted. 2013.

Months 8-12 Complete formal requirements for Year 2. Consider the generaliza-
tion of the problem of scheduling for electricity cost in Smart Grid.

Ye
ar

3 Months 1-6 Possible further work on the bandwidth allocation problem and im-
provement on the online dynamic bin packing problem of unit frac-
tion items.

Months 7-12 Conclusions and thesis write-up.

References
1. Amotz Bar-Noy and Richard E. Ladner. Windows scheduling problems for broad-

cast systems. SIAM J. Comput., 32:1091–1113, April 2003.
2. Amotz Bar-Noy, Richard E. Ladner, and Tami Tamir. Windows scheduling as a

restricted version of bin packing. ACM Trans. Algorithms, 3, August 2007.
3. Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič,

and Tobias Mömke. On the advice complexity of online problems. In Proceedings
of the 20th International Symposium on Algorithms and Computation, ISAAC ’09,
pages 331–340, Berlin, Heidelberg, 2009. Springer-Verlag.

Algorithms for Packing and Scheduling – Second Year Report 7

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

5. Joan Boyar and Lene M. Favrholdt. The relative worst order ratio for online
algorithms. ACM Trans. Algorithms, 3(2), May 2007.

6. Joseph Wun-Tat Chan, Tak Wah Lam, and Prudence W. H. Wong. Dynamic bin
packing of unit fractions items. Theoretical Computer Science, 409(3):172–206,
2008.

7. Joseph Wun-Tat Chan, Prudence W. H. Wong, and Fencol C. C. Yung. On dy-
namic bin packing: An improved lower bound and resource augmentation analysis.
Algorithmica, 53(2):172–206, 2009.

8. E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor,
R. R. Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I:
Perfect packing theorems and the average case behavior of optimal packings. SIAM
J. Discrete Math., 13:38–402, 2000.

9. E. G. Coffman Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approxima-
tion algorithms: Combinatorial analysis. In D. Z. Du and P. M. Pardalos, editors,
Handbook of Combinatorial Optimization, 1998.

10. E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: A survey. In D. S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, pages 46–93. PWS Publishing, 1996.

11. E. G. Coffman, Jr., D. S. Johnson, L. A. McGeoch, P. W. Shor, and R. R. Weber.
Bin packing with discrete item sizes, Part III: Average case behavior of FFD and
BFD. In preparation.

12. Edward G. Coffman, Jr., M. R. Garey, and David S. Johnson. Dynamic bin packing.
SIAM J. Comput., 12(2):227–258, 1983.

13. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, On-line Algorithms–The State of the Art, pages 147–
177. Springer, 1996.

14. Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-
relevant information in input. RAIRO - Theoretical Informatics and Applications,
43:585–613, 6 2009.

15. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

16. K. Hamilton and N. Gulhar. Taking demand response to the next level. Power
and Energy Magazine, IEEE, 8(3):60–65, 2010.

17. A. Ipakchi and F. Albuyeh. Grid of the future. IEEE Power and Energy Magazine,
7(2):52–62, 2009.

18. Edward G. Coffman Jr., M. R. Garey, and David S. Johnson. Dynamic bin packing.
SIAM J. Comput., 12(2):227–258, 1983.

19. Claire Kenyon. Best-fit bin-packing with random order. In In 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 359–364, 1997.

20. Iordanis Koutsopoulos and Leandros Tassiulas. Control and optimization meet the
smart power grid: Scheduling of power demands for optimal energy management.
In Proc. e-Energy, pages 41–50, 2011.

21. T.J. Lui, W. Stirling, and H.O. Marcy. Get smart. IEEE Power and Energy
Magazine, 8(3):66–78, 2010.

An 8/3 Lower Bound for
Online Dynamic Bin Packing

Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea⋆

Department of Computer Science, University of Liverpool, UK
{pwong,m.burcea}@liverpool.ac.uk, ccyung@graduate.hku.hk

Abstract. We study the dynamic bin packing problem introduced by
Coffman, Garey and Johnson. This problem is a generalization of the bin
packing problem in which items may arrive and depart dynamically. The
objective is to minimize the maximum number of bins used over all time.
The main result is a lower bound of 8/3 ∼ 2.666 on the achievable com-
petitive ratio, improving the best known 2.5 lower bound. The previous
lower bounds were 2.388, 2.428, and 2.5. This moves a big step forward
to close the gap between the lower bound and the upper bound, which
currently stands at 2.788. The gap is reduced by about 60% from 0.288 to
0.122. The improvement stems from an adversarial sequence that forces
an online algorithm A to open 2s bins with items having a total size
of s only and this can be adapted appropriately regardless of the current
load of other bins that have already been opened by A. Comparing with
the previous 2.5 lower bound, this basic step gives a better way to derive
the complete adversary and a better use of items of slightly different
sizes leading to a tighter lower bound. Furthermore, we show that the
2.5-lower bound can be obtained using this basic step in a much simpler
way without case analysis.

1 Introduction

Bin packing is a classical combinatorial optimization problem [6, 8, 9]. The objec-
tive is to pack a set of items into a minimum number of unit-size bins such that
the total size of the items in a bin does not exceed the bin capacity. The problem
has been studied extensively both in the offline and online settings. It is well-
known that the problem is NP-hard [11]. In the online setting [14, 15], items
may arrive at arbitrary time; item arrival time and item size are only known
when an item arrives. The performance of an online algorithm is measured using
competitive analysis [3]. Consider any online algorithm A. Given an input I, let
OPT (I) and A(I) be the maximum number of bins used by the optimal offline
algorithm and A, respectively. Algorithm A is said to be c-competitive if there
exists a constant b such that A(I) ≤ cOPT (I) + b for all I.
Online dynamic bin packing. Most existing work focuses on “static” bin pack-
ing in the sense that items do not depart. In some potential applications like

⋆ Supported by EPSRC Studentship.

2 Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

warehouse storage, a more realistic model takes into consideration of dynamic
arrival and departures of items. In this natural generalization, known as dynamic
bin packing [7], items arrive over time, reside for some period of time, and may
depart at arbitrary time. Each item has to be assigned to a bin from the time
it arrives until it departs. The objective is to minimize the maximum number
of bins used over all time. Note that migration to another bin is not allowed. In
the online setting, the size and arrival time is only known when an item arrives
and the departure time is only known when the item departs.

In this paper, we focus on online dynamic bin packing. It is shown in [7] that
First-Fit has a competitive ratio between 2.75 and 2.897, and a modified first-fit
algorithm is 2.788-competitive. A lower bound of 2.388 is given for any deter-
ministic online algorithm. This lower bound has later been improved to 2.428 [4]
and then 2.5 [5]. The problem has also been studied in two- and three-dimension
as well as higher dimension [10, 16]. Other work on dynamic bin packing con-
sidered a restricted type of items, namely unit-fraction items [2, 4, 12]. Further-
more, Ivkovic and Lloyd [13] studied the fully dynamic bin packing problem,
which allows repacking of items for each item arrival or departure and they gave
a 1.25-competitive online algorithm for this problem. Balogh et al. [1] studied
the problem when a limited amount of repacking is allowed.
Our contribution. We improve the lower bound of online dynamic bin packing
for any deterministic online algorithm from 2.5 to 8/3 ∼ 2.666. This makes a big
step forward to close the gap with the upper bound, which currently stands at
2.788 [7]. The improvement stems from an adversarial sequence that forces an
online algorithm A to open 2s bins with items having a total size of s only and
this can be adapted appropriately regardless of the load of current bins opened
by A. Comparing with the previous 2.5 lower bound, this basic step gives a
better use of items of slightly different sizes leading to a tighter lower bound.
Furthermore, we show in Section 3.3 that the 2.5-lower bound can be obtained
using this basic step in a much simpler way without case analysis. It is worth
mentioning that we consider optimal packing without migration at any time.

The adversarial sequence is composed of two operations, namely Op-Inc and
Op-Comp. Roughly speaking, Op-Inc uses a load of at most s to make A open s
bins, this is followed by some item departure such that each bin is left with only
one item and the size is increasing across the bins. Op-Comp then releases items
of complementary size such that for each item of size x, items of size 1 − x are
released. The complementary size ensures that the optimal offline algorithm O
is able to pack all these items using s bins while the sequence of arrival ensures
that A has to pack these complementary items into separate bins.

2 Preliminaries

In dynamic bin packing, items arrive and depart at arbitrary time. Each item
comes with a size. We denote by s-item an item of size s. When an item arrives,
it must be assigned to a unit-sized bin immediately without exceeding the bin
capacity. At any time, the load of a bin is the total size of items currently

Online Dynamic Bin Packing 3

assigned to that bin that have not yet departed. We denote by ℓ-bin a bin of
load ℓ. Migration is not allowed, i.e., once an item is assigned to a bin, it cannot
be moved to another bin. This also applies to the optimal offline algorithm. The
objective is to minimize the maximum number of bins used over all time.

When we discuss how items are packed, we use the following notations:

– Item configuration ψ: y∗z describes a load y with y
z items of size z, e.g., 1

2∗ǫ
means a load 1

2 with 1
2ǫ items of size ǫ. We skip the subscript when y = z.

– Bin configuration π: (ψ1, ψ2, · · ·), e.g., (13 , 12∗ǫ) means a bin has a load of
5
6 , with a 1

3 -item and an addition load 1
2 with ǫ-items. In some cases, it is

clearer to state the bin configuration in other ways, e.g., (12 ,
1
2), instead of

1∗ 1
2
. Similarly, we will use 6× 1

6 instead of 1∗ 1
6
.

– Packing configuration ρ: {x1:π1, x2:π2, · · · } a packing where there are x1 bins
with bin configuration π1, x2 bins with π2, and so on. E.g., {2k:1∗ǫ, k:(13 , 12∗ǫ)}
means 2k bins are each packed with load 1 with ǫ-items and another k bins
are each packed with a 1

3 -item and an addition load 1
2 with ǫ-items.

– It is sometimes more convenient to describe a packing as x:f(i), for 1 ≤ i ≤ x,
which means that there are x bins with different load, one bin with load f(i)
for each i. E.g., k: 12−iδ, for 1 ≤ i ≤ k, means that there are k bins and one
bin with load 1

2−iδ for each i.

3 Op-Inc and Op-Comp

In this section, we discuss a process that the adversary uses to force an online
algorithm A to open new bins. The adversary releases items of slightly different
sizes in each stage and uses items of complementary sizes in different stages.
Two operations are designed, namely, Op-Inc and Op-Comp. Op-Inc forces A to
open some bins each with one item (of size < 1

2) and the size of items is strictly
increasing. Op-Comp then bases on the bins opened by Op-Inc and releases items
of complementary size. This is to ensure that an item released in Op-Inc can be
packed with a corresponding item released in Op-Comp into the same bin by an
optimal offline algorithm. In the adversary, a stage of Op-Inc is associated with
a corresponding stage of Op-Comp, but not necessarily consecutive, e.g., in one
of the cases, Op-Inc is in Stage 1 and the corresponding Op-Comp is in Stage 4.

3.1 Operation Op-Inc

The aim of Op-Inc is to make A open at least s more bins, for some s > 0, such
that each new bin contains one item with item size increasing over the s bins.
Pre-condition. Consider any value 0 < x < 1

2 . Let h be the number of x-items
that can be packed in existing bins.
Items to be involved. The items to be released have size in the range [x, x+ ǫ],
for some small ǫ, such that x+ ǫ < 1

2 . A total of h+⌊ s
x⌋ items are to be released.

Outcome. A opens at least s more new bins with increasing load in each new
bin and the load of current bins remains unchanged.

4 Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

< <<< <<ℓ1 ℓ2 ℓsℓs−1

ss

1−ℓs 1−ℓs−1 1−ℓ11−ℓ2

Fig. 1. Op-Comp: Assuming k = 0. The s bins on the left are bins created by Op-Inc.
The s new bins on the right are due to Op-Comp. Note that each existing item has a
complementary new item such that the sum of size is 1.

The adversary. The adversary releases items of size x, x + ǫ
s , x + 2ǫ

s , · · · . Let
zi = x+ iǫ

s . In each step i, the adversary releases zi-items until A opens a new
bin. We stop releasing items when h+ ⌊ s

x⌋ items have been released in total. By
the definition of h, s and x, A would have opened at least s new bins. We then
let zi-items depart except exactly one item of size zi, for 0 ≤ i < s, in the i-th
new bin opened by A.

Using Op-Inc. When we use Op-Inc later, we simply describe it as Op-Inc
releasing h+ ⌊ s

x⌋ items with the understanding that it works in phases and that
items depart at the end.

3.2 Operation Op-Comp

Op-Comp is designed to work with Op-Inc and assumes that there are s existing
bins each with load in the range [x, y] where x < y < 1

2 . The outcome of
Op-Comp is that A opens s more bins. Figure 1 gives an illustration.

Pre-condition. Consider two values x < y < 1
2 . Suppose A uses s bins with

load x = ℓ1 < ℓ2 < · · · < ℓs = y. Let ℓ =
∑

1≤i≤s ℓi. Furthermore, suppose
there are some additional bins with load smaller than x. Let h be the number
of (1−y)-items that can be packed in other existing bins with load less than x.

Items to be involved. The items to be released have size in the range [1−y, 1−x].
Note that 1 − x > 1 − y > 1

2 . In each step i, for 1 ≤ i ≤ s, the number of
(1− ℓs+1−i)-items released is at most h+ s+ 2− i.

Outcome. A opens s more bins, each with an item 1− ℓs+1−i, for 1 ≤ i ≤ s.

The adversary. Starting from the largest load ℓs, we release items of size 1−ℓs
until A opens a new bin. At most h + s + 1 items are needed. Then we let all
(1−ℓs)-items depart except the one packed in the new bin. In general, in Step i,
for 1 ≤ i ≤ s, we release items of size 1−ℓs+1−i until A opens a new bin. Note
that such items can only be packed in the first s + 1 − i bins and so at most
h+ s+ 2− i items are required to force A to open another bin. We then let all
(1−ℓs+1−i)-items depart except the one packed in the new bin.

Using Op-Comp. Similar to Op-Inc, when we use Op-Comp later, we describe
it as Op-Comp with h and s and the understanding is that it works in phases
and there are items released and departure in between. Note that the ℓi- and
(1− ℓi)-items are complementary and the optimal offline algorithm would pack
each pair of complementary items in the same bin.

Online Dynamic Bin Packing 5

3.3 A 2.5 lower bound using Op-Inc and Op-Comp

We demonstrate how to use Op-Inc and Op-Comp by showing that we can obtain
a 2.5 lower bound as in [5] using the two operations in a much simpler way.

Let k be some large even integer, ǫ = 1
k , and δ =

ǫ
k+1 . The adversary works

in stages. In Stage 1, we release k
ǫ items of size ǫ. Any online algorithm A uses at

least k bins. Let items depart until the configuration is {k:ǫ}. In Stage 2, we aim
to force A to use k

2 new bins. We use Op-Inc to release at most 2k items of size in

[12−k
2 δ,

1
2−δ]. For each existing ǫ-bin, at most one such new items can be packed

because 1−kδ+ǫ > 1. The parameters for Op-Inc are therefore x = 1
2−k

2 δ, h = k

and s = k
2 . The configuration of A becomes {k:ǫ, k2 : 12−iδ}, for 1 ≤ i ≤ k

2 . In

Stage 3, we aim to force A to use k
2 new bins. We use Op-Comp to release items

of size in the range x = 1
2+δ to y = 1

2+
k
2 δ. At most one such item can be packed

in the bins with an ǫ-item, i.e., h = k. The second k
2 bins contains items of

complementary size to the items released in Stage 3, i.e., s = k
2 . Note that at

any time during Op-Comp, at most 3k
2 +1 items are released. A needs to open

at least k
2 new bins with the configuration {k:ǫ, k2 : 12−iδ, k2 : 12+iδ}, for 1 ≤ i ≤ k

2 .

In the final stage, we release k
2 items of size 1 and A needs a new bin for each

of these items. The total number of bins used by A becomes 5k
2 .

On the other hand, the optimal algorithm O can use k + 2 bins to pack all
items as follows and hence the competitive ratio is at least 2.5. In Stage 1, all
the ǫ-items that never depart are packed in one bin and the rest in k − 1 bins.
In Stage 2, the new items are packed in k bins, with the k

2 bins with size 1
2−iδ,

for 1 ≤ i ≤ k
2 , that never depart each packed in one bin, and the remaining 3k

2
items in the remaining space. At the end of the stage, only one item is left in
each of the first k

2 bins and the second k
2 bins are freed for Stage 3. In Stage 3,

the complementary items that do not depart are packed in the corresponding k
2

bins, and the remaining in at most k
2 + 1 bins. Finally in Stage 4, the 1-items

are packed in the k
2 bins freed in Stage 3.

4 The 8/3 Lower Bound

We give an adversary such that at any time, the total load of items released and
not departed is at most 6k +O(1), for some large integer k. We prove that any
online algorithm A uses 16k bins, while the optimal offline algorithm O uses
at most 6k + O(1) bins. Then, the competitive ratio of A is at least 8

3 . The
adversary works in stages and uses Op-Inc and Op-Comp in pairs. Let ni be
the number of new bins used by A in Stage i. Let ǫ = 1

6k and δ = ǫ
16k .

In Stage 0, the adversary releases 6k
ǫ items of size ǫ, with total load 6k. It is

clear that A needs at least 6k bins, i.e., n0 ≥ 6k. We distinguish between two
cases: n0 ≥ 8k and 8k > n0 ≥ 6k. We leave the details of the easier first case in
the full paper, and we consider only the complex second case in this paper.

6 Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

Case 2: 6k ≤ n0 < 8k.

This case involves three subcases. We make two observations about the load of
the n0 bins. If less than 4k bins have load at least 1

2 + ǫ, then the total load of
all bins is at most (4k − 1) + 4k/2 = 6k − 1, contradicting the fact that total
load of items released is 6k. Similarly, if less than 5k bins have load at least
1
4 + ǫ, then the total load of all bins is at most (5k − 1) + 3k/4 < 6k, leading to
a contradiction.

Observation 1 At the end of Stage 0 of Case 2, (i) at least 4k bins have load
at least 1

2 + ǫ; (ii) at least 5k bins have load at least 1
4 + ǫ.

Stage 1. We aim at n1 ≥ 2k. We let ǫ-items depart until the configuration of A
becomes

{4k:(1
2
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ} ,

with 6k bins and a total load of 9k/4+O(1). We then use Op-Inc with x = 1
4+δ,

h = 8k, and s = 2k. The first 4k bins can pack at most one x-item, the next
k bins at most two, and the last k bins at most three, i.e., h = 9k. Any new
bin can pack at most three items, implying that Op-Inc releases 15k = h + 3s
items of increasing sizes, from 1

4+δ to at most 1
4+15kδ. According to Op-Inc, A

opens at least 2k bins, i.e., n1 ≥ 2k. We consider two subcases: n1 ≥ 4k and
2k ≤ n1 < 4k.

Case 2.1: 6k ≤ n0 < 8k and n1 ≥ 4k. In this case, we have 10k ≤ n0 + n1.

Stage 2. We aim at n2 ≥ 4k. The configuration after Op-Inc becomes

{4k:(1
4
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ, 4k:

1

4
+iδ} , for 1 ≤ i ≤ 4k,

with 10k bins and a total load of 9k/4+O(1). Note that in the last 4k bins, the
load increases by δ from 1

4+δ to 1
4+4kδ. We now use Op-Comp with x = 1

4+δ,
y = 1

4+4kδ, h = k, and s = 4k. I.e., Op-Comp releases items of sizes from 3
4−4kδ

to 3
4−δ and at any time, at most 5k + 1 items are needed. None of these items

can be packed in the first 5k bins, and only one can be packed in the next k
bins, i.e., h = k as said. According to Op-Comp, A requires 4k new bins.

Stage 3. We aim at n3 = 2k. We let items depart until the configuration becomes

{4k:ǫ, k:ǫ, k:ǫ, 4k: 1
4
+iδ, 4k:

3

4
−iδ} , for 1 ≤ i ≤ 4k,

with 14k bins and a load of 4k +O(1). We further release 2k items of size 1. A
needs to open 2k new bins. In total, A uses 6k + 4k + 4k + 2k = 16k bins.

We note that each item with size 1
4+iδ has a corresponding item 3

4−iδ such
that the sum of sizes is 1. This allows the optimal offline algorithm to have a
better packing. The details will be given in the full paper.

Lemma 1. If A uses [6k, 8k) bins in Stage 0 and at least 4k bins in Stage 1,
then A uses 16k bins at the end while O uses 6k + 4 bins.

Online Dynamic Bin Packing 7

Case 2.2: 6k ≤ n0 < 8k and 2k ≤ n1 < 4k. In this case, the Op-Inc
in Stage 1 is paired with an Op-Comp in Stage 4 (not consecutively), and in
between, there is another pair of Op-Inc and Op-Comp in Stages 2 and 3, re-
spectively. Let m be the number of bins among the n1 new bins that have been
packed two items. We further distinguish two subcases: m ≥ 2k and m < 2k.

Case 2.2.1: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m ≥ 2k. In this case, we
have 8k ≤ n0 + n1 < 10k and m ≥ 2k. We make an observation about the bins
containing some ǫ-items. In particular, we claim that there are at least k bins
that are packed with

– either one ǫ-item and at least two (14+iδ)-items,
– or one (14+iδ)-item plus at least a load of (14+ǫ)∗ǫ.

We note that in Stage 1, 15k items are released, at most three items can be
packed in any of the n1 < 4k new bins, i.e., at most 12k items. So, at least 3k
of them have to been packed in the first 6k bins. Let a and b be the number
of bins in the first 5k bins (with load at least 1

4+ǫ) that are packed at least
one (14+iδ)-item; z1, z2, z3 be the number of bins in the next k bins (with one
ǫ-item) that are packed one, two, and three (14+iδ)-items, respectively. Note
that z1 + z2 + z3 = k. Since 3k items have to be packed in these bins, we have
a+ 2b+ z1 + 2z2 + 3z3 ≥ 3k, hence a+ 2b+ z2 + 2z3 ≥ 2k. The last inequality
implies that a+ b+ z2 + z3 ≥ k and the claim holds.

Observation 2 At the end of Stage 1 of Case 2.2.1, at least k bins are packed
with either one ǫ-item and at least two (14+iδ)-items, or one (14+iδ)-item plus
at least a load of (14+ǫ)∗ǫ.

Stage 2. We aim at n2 ≥ 2k. Let z = z2 + z3. We let items depart until the
configuration becomes

{3k:(1
2
+ǫ)∗ǫ, k−z:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), z:(ǫ,

1

4
+iδ,

1

4
+iδ), 2k:ǫ, 2k:(

1

4
+iδ,

1

4
+iδ)} ,

with 8k bins and a total load of 3k +O(1).
Let δ′ = δ

16k . We use Op-Inc with x = 1
2−6kδ′, h = 2k, and s = 2k. The x-

items can only be packed in the 2k bins with load ǫ, at most one item in one bin,
i.e., h = 2k. Any new bin can pack at most two, implying that Op-Inc releases
6k = h+ 2s items of increasing sizes, from 1

2−6kδ′ to at most 1
2−δ′. According

to Op-Inc, A has to open at least 2k new bins, i.e., n2 ≥ 2k.
Stage 3. In this stage, we aim at n3 ≥ 2k. We use Op-Comp which corresponds
to Op-Inc in Stage 2. We let items depart until the configuration becomes

{3k:(12+ǫ)∗ǫ, k−z:((14+ǫ)∗ǫ, 14+iδ), z:(ǫ, 14+iδ, 14+iδ), 2k:ǫ, 2k:(14+iδ, 14+iδ), 2k: 12−iδ′} ,

with 10k bins and a total load of 4k + O(1). We then use Op-Comp with x =
1
2−6kδ′, y = 1

2−5kδ′, h = 2k, and s = 2k. I.e., we release items of increasing
size from 1

2+5kδ′ to 1
2+6kδ′, and at any time, at most 4k + 1 items are needed.

The 2k bins of load ǫ can pack one such item. Suppose there are w, out of 2k,

8 Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

ǫ-bins that are not packed with a 1
2+iδ

′-item. According to Op-Comp, A has to
open 2k+w new bins.
Stage 4. In this stage, we aim at n4 ≥ 2k−w. We use Op-Comp which corre-
sponds to Op-Inc in Stage 1. We let items depart until the configuration is

{3k:(14+ǫ)∗ǫ, k−z:(14+ǫ)∗ǫ, z:(ǫ, 14+iδ), 2k−w:(ǫ, 12+iδ′), w:ǫ, 2k: 14+iδ, 2k: 12−iδ′, 2k+w: 12+iδ′, } ,

with 12k+w bins and a total load of 9k/2 +O(1). We then use Op-Comp with
x = 1

4+δ, y = 1
4+2kδ, h = w, and s = 2k−w. I.e., we release items of sizes from

3
4−2kδ to 3

4−δ and at any time, at most 2k+1 items are needed. Only w ǫ-bins
can pack such item, i.e., h = w as said. According to Op-Comp, A has to open
2k−w new bins.
Stage 5. In this final stage, we aim at n5 = 2k. We let items depart until the
configuration is

{3k:ǫ, k−z:ǫ, z:ǫ, 2k−w:ǫ, w:ǫ, 2k: 1
4
+iδ, 2k:

1

2
−iδ′, 2k+w: 1

2
+iδ′, 2k−w: 3

4
−iδ, } ,

with 14k bins and a total load of 4k − w
4 +O(1). Finally, we release 2k items of

size 1 and A has to open 2k new bins. In total, A uses 3k + (k − z) + z + (2k −
w) + w + 2k + 2k + (2k + w) + (2k − w) + 2k = 16k. The packing of O will be
given in the full paper.

Lemma 2. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m ≥ 2k, then A uses 16k bins at the end while O uses 6k + 3 bins.

Case 2.2.2: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m < 2k. We recall that
in Stage 1, 15k items of size 1

4+iδ are released and A uses [2k, 4k) new bins for
these items.

Observation 3 (i) At most 8k items of size 1
4+iδ can be packed to the n1 new

bins. (ii) At least k of the {k: 14+iδ, k:ǫ} bins have load more than 1
2 . (iii) At

least 2k of the {4k:(12+ǫ)∗ǫ} bins are packed with at least one (12+iδ)-item.

Let z1 and z2 be the number of new bins that are packed one and at least
two, respectively, (14+iδ)-items The following observation gives a bound on z.

Observation 4 (i) At most 9k items of size 1
4+iδ can be packed in existing

bins. (ii) z2 ≥ k. (iii) z1 ≥ 3(2k − z2).

Stage 2. We target n2 ≥ z2. We let items depart until the configuration becomes

– 2k:(12+ǫ)∗ǫ,

– 2k:((14+ǫ)∗ǫ,
1
4+iδ), this is possible because of Observation 3(iii),

– x:(ǫ, 14+iδ,
1
4+iδ),

– k−x:((14+ǫ)∗ǫ, 14+iδ), this is possible because of Observation 3(ii),

– k:ǫ,

Online Dynamic Bin Packing 9

– z2:(
1
4+iδ,

1
4+iδ), this is possible because of Observation 4(ii),

– 2(2k−z2):(14+iδ), this is possible because of Observation 4(iii),

with 10k − z2 bins and a total load of 7k/2 + O(1). We then use Op-Inc with
x = 1

2−5kδ′, h = 5k − 2z2 and s = z2. The x-items can only be packed in k of
ǫ-bins and 2(2k− z2) of (

1
4+iδ)-bins, i.e., h = k+2(2k− z2) = 5k− 2z2 as said.

Any new bin can pack at most two, implying that Op-Inc releases 5k = h + 2s
items of increasing sizes from 1

2−5kδ′ to 1
2−δ′. According to Op-Inc, A has to

open at least z2 bins, i.e., n2 ≥ z2.
Stage 3. We target n3 ≥ z2. We let items depart until the configuration becomes

{2k:(1
2
+ǫ)∗ǫ, 2k:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), x:(ǫ,

1

4
+iδ,

1

4
+iδ), k−x:((1

4
+ǫ)∗ǫ,

1

4
+iδ), k:ǫ,

z2:(
1

4
+iδ,

1

4
+iδ), 2(2k−z2):

1

4
+iδ, z2:

1

2
−iδ′} ,

with 10k bins and a total load of 7k/2 + z2/2 + O(1). We use Op-Comp with
s = z2 to release items of increasing size from 1

2+δ
′. These items can only be

packed in ǫ-bins (k of them) and (14+iδ)-bins (2(2k− z2) of them). At any time,
at most (5k − z2) + 1 items are needed. According to Op-Comp, A has to open
z2 bins, i.e., n3 ≥ z2.
Stage 4. We target n4 ≥ (4k − z2). We let items depart until the configuration
becomes

{4k−x:(1
4
+ǫ)∗ǫ, k+x:(ǫ,

1

4
+iδ), k:ǫ, 4k−z2:

1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′} ,

with 10k+z2+O(1) bins and a total load of 9k/4+3z2/4. We then use Op-Comp
with s = 4k−z2 and items of increasing size 3

4−iδ. Using similar ideas as before,
A has to open (4k − z2) new bins.
Stage 5. We target n5 = 2k. We let items depart until the configuration becomes

{4k−x:ǫ, k+x:ǫ, k:ǫ, 4k−z2:
1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′, 4k−z2:

3

4
−iδ, } ,

with 14k bins and a total load of 4k + O(1). We finally release 2k items of size
1 and A has to open 2k new bins. In total A uses 6k+8k+2k = 16k bins. The
packing of O will be given in the full paper.

Lemma 3. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and
m < 2k, then A uses 16k bins at the end while O uses 6k + 5 bins.

Theorem 5. No online algorithm can be better than 8/3-competitive.

5 Conclusion

We have derived a 8/3 ∼ 2.666 lower bound on the competitive ratio for dy-
namic bin packing, improving the best known 2.5 lower bound [5]. We designed

10 Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea

two operations that release items of slightly increasing sizes and items with com-
plementary sizes. These operations make a more systematic approach to release
items: the type of item sizes used in a later case is a superset of those used in an
earlier case. This is in contrast to the previous 2.5 lower bound in [5] in which
rather different sizes are used in different cases. Furthermore, in each case, we use
one or two pairs of Op-Inc and Op-Comp, which makes the structure clearer and
the proof easier to understand. We also show that the new operations defined
lead to a much easier proof for a 2.5 lower bound. An obvious open problem is
to close the gap between the upper and lower bounds.

References

1. J. Balogh, J. Békési, G. Galambos, and G. Reinelt. Lower bound for the online bin
packing problem with restricted repacking. SIAM J. Comput., 38:398–410, 2008.

2. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. In J. I. Munro, editor, SODA, pages 224–233. SIAM, 2004.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. J. W.-T. Chan, T. W. Lam, and P. W. H. Wong. Dynamic bin packing of unit
fractions items. Theoretical Computer Science, 409(3):172–206, 2008.

5. J. W.-T. Chan, P. W. H. Wong, and F. C. C. Yung. On dynamic bin pack-
ing: An improved lower bound and resource augmentation analysis. Algorithmica,
53(2):172–206, 2009.

6. E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing ap-
proximation algorithms: Combinatorial analysis. In D.-Z. Du and P. M. Pardalos,
editors, Handbook of Combinatorial Optimization. Kluwer Academic Publishers,
1998.

7. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
J. Comput., 12(2):227–258, 1983.

8. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Bin packing approximation
algorithms: A survey. In D. S. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, pages 46–93. PWS, 1996.

9. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, On-line Algorithms—The State of the Art, volume
1442 of Lecture Notes in Computer Science, pages 147–177. Springer, 1996.

10. L. Epstein and M. Levy. Dynamic multi-dimensional bin packing. Journal of
Discrete Algorithms, 8:356–372, 2010.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

12. X. Han, C. Peng, D. Ye, D. Zhang, and Y. Lan. Dynamic bin packing with unit
fraction items revisited. Information Processing Letters, 110:1049–1054, 2010.

13. Z. Ivkovic and E. L. Lloyd. A fundamental restriction on fully dynamic mainte-
nance of bin packing. Inf. Process. Lett., 59(4):229–232, 1996.

14. S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.
15. A. van Vliet. An improved lower bound for on-line bin packing algorithms. Infor-

mation Processing Letters, 43(5):277–284, 1992.
16. P. W. H. Wong and F. C. C. Yung. Competitive multi-dimensional dynamic bin

packing via L-shape bin packing. In Proc. of Workshop on Approximation and
Online Algorithms (WAOA), pages 242–254, 2009.

Online Multi-dimensional Dynamic Bin Packing

of Unit-Fraction Items

Mihai Burcea⋆, Prudence W.H. Wong, and Fencol C.C. Yung

Department of Computer Science, University of Liverpool, UK
{m.burcea,pwong}@liverpool.ac.uk, ccyung@graduate.hku.hk

Abstract. We study the 2-D and 3-D dynamic bin packing problem, in
which items arrive and depart at arbitrary times. The 1-D problem was
first studied by Coffman, Garey, and Johnson motivated by the dynamic
storage problem. Bar-Noy et al. have studied packing of unit fraction
items (i.e., items with length 1/k for some integer k ≥ 1), motivated by
the window scheduling problem. In this paper, we extend the study of
2-D and 3-D dynamic bin packing problem to unit fractions items. The
objective is to pack the items into unit-sized bins such that the maximum
number of bins ever used over all time is minimized. We give a scheme
that divides the items into classes and show that applying the First-Fit
algorithm to each class is 6.7850- and 21.6108-competitive for 2-D and
3-D, respectively, unit fraction items. This is in contrast to the 7.4842
and 22.4842 competitive ratios for 2-D and 3-D, respectively, that would
be obtained using only existing results for unit fraction items.

1 Introduction

Bin packing is a classical combinatorial optimization problem that has been
studied since the early 70’s and different variants continue to attract researchers’
attention (see [7, 10, 12]). It is well known that the problem is NP-hard [14]. The
problem was first studied in one dimension (1-D), and has been extended to
multiple dimensions (d -D, where d ≥ 1). In d-D packing, the bins have lengths
all equal to 1, while items are of lengths in (0, 1] in each dimension. The objective
of the problem is to pack the items into a minimum number of unit-sized bins
such that the items do not overlap and do not exceed the boundary of the bin.
The items are oriented and cannot be rotated.

Extensive work (see [7, 10, 12]) has been done in the offline and online settings.
In the offline setting, all the items and their sizes are known in advance. In the
online setting, items arrive at unpredictable time and the size is only known
when the item arrives. The performance of an online algorithm is measured
using competitive analysis [3]. Consider any online algorithm A with an input
I. Let OPT (I) and A(I) be the maximum number of bins used by the optimal
offline algorithm and A, respectively. Algorithm A is said to be c-competitive if
there exists a constant b such that A(I) ≤ c · OPT (I) + b for all I.

⋆ Supported by EPSRC Studentship.

In some real applications, item size is not represented by arbitrary real num-
bers in (0, 1]. Bar-Noy et al. [2] initiated the study of the unit fraction bin packing
problem, a restricted version where all sizes of items are of the form 1

k , for some
integer k. The problem was motivated by the window scheduling problem [1, 2].
Another related problem is for power fraction items, where sizes are of the form
1
2k
, for some integer k. Bin packing with other restricted form of item sizes in-

cludes divisible item sizes [8] (where each possible item size can be divided by
the next smaller item size) and discrete item sizes [6] (where possible item sizes
are {1/k, 2/k, · · · , j/k} for some 1 ≤ j ≤ k). For d-D packing, items of restricted
form have been considered, e.g., [16] considered strip packing ([19]) of items with
one of the dimensions having discrete sizes and [17] considered bin packing of
items where the lengths of each dimension are at most 1/m, for some integer
m. The study of these problems is motivated by applications in job scheduling.
As far as we know, unit or power fraction items have not been considered in
multi-dimensional packing.

Dynamic Bin Packing. Earlier work concentrated on “static” bin packing,
where items do not depart. In potential applications, like warehouse storage, a
more realistic setting is the dynamic model, where items arrive and depart dy-
namically. This natural generalization, known as dynamic bin packing problem,
was introduced by Coffman, Garey, and Johnson [9]. The items arrive over time,
reside for some period of time, and may depart at arbitrary times. Each item
must be packed to a bin from its arrival to its departure. Again, migration to
another bin is not allowed, yet rearrangement of items within a bin is allowed.
The objective is to minimize the maximum number of bins used over all time. In
the offline setting, the sizes, and arrival and departure times of items are known
in advance, while in the online setting the sizes and arrival times of items are
only known when items arrive, and the departure times are known only when
items depart.

Previous Work. The dynamic bin packing problem was first studied in 1-D for
general size items by Coffman, Garey and Johnson [9], showing that the First-
Fit (FF) algorithm has a competitive ratio lying between 2.75 and 2.897, and
a modified First-Fit algorithm is 2.788-competitive. They gave a formula of the
competitive ratio of FF when the item size is at most 1

k . When k = 2 and 3,
the ratios are 1.7877 and 1.459, respectively. They also gave a lower bound of
2.388 for any deterministic online algorithm, which was improved to 2.5 [5] and
then to 2.666 [21]. For unit fraction items, Chan et al. [4] obtained a competitive
ratio of 2.4942, which was recently improved by Han et al. to 2.4842 [15], while
the lower bound was proven to be 2.428 [4]. Multi-dimensional dynamic bin
packing of general size items has been studied by Epstein and Levy [13], who
showed that the competitive ratios are 8.5754, 35.346 and 2 · 3.5d for 2-D, 3-D
and d-D, respectively. The ratios are then improved to 7.788, 22.788, and 3d,
correspondingly [20]. For 2-D and 3-D general size items, the lower bounds are
3.70301 and 4.85383 [13], respectively. In this case, the lower bounds apply even
to unit fraction items.

Table 1. Competitive ratios for general size, unit fraction, and power fraction items.
Results obtained in this paper are marked with “[*]”.

1-D 2-D 3-D

General size 2.788 [9] 7.788 [20] 22.788 [20]

Unit fraction 2.4842 [15] 6.7850 [*] 21.6108 [*]

Power fraction 2.4842 [15] 6.2455 [*] 20.0783 [*]

Our Contribution. In this paper, we extend the study of 2-D and 3-D online
dynamic bin packing problem to unit and power fraction items. We observe that
using the 1-D results on unit fraction items [15], the competitive ratio of 7.788
for 2-D [20] naturally becomes 7.4842, while the competitive ratio of 22.788 for
3-D [20] becomes 22.4842. An immediate question arising is whether we can
have an even smaller competitive ratio. We answer the questions affirmatively
as follows (see Table 1 for a summary).

– For 2-D, we obtain competitive ratios of 6.7850 and 6.2455 for unit and
power fraction items, respectively; and

– For 3-D, we obtain competitive ratios of 21.6108 and 20.0783 for unit and
power fraction items, respectively.

We adopt the typical approach of dividing items into classes and analyzing
each class individually. We propose several natural classes and define different
packing schemes based on the classes1. In particular, we show that two schemes
lead to better results. We show that one scheme is better than the other for unit
fraction items, and vice versa for power fraction items. Our approach gives a
systematic way to explore different combinations of classes. One observation we
have made is that dividing 2-D items into three classes gives comparable results
but dividing into four classes would lead to much higher competitive ratios.

As an attempt to justify the approach of classifying items, we show that,
when classification is not used, the performance of the family of any-fit algo-
rithms is unbounded for 2-D general size items. This is in contrast to the case
of 1-D packing, where the First-Fit algorithm (without classification) is O(1)-
competitive [9].

2 Preliminaries

Notations and Definitions.We consider the online dynamic bin packing prob-
lem, in which 2-D and 3-D items must be packed into 2-D and 3-D unit-sized
bins, respectively, without overflowing. The items arrive over time, reside for
some period of time, and may depart at arbitrary times. Each item must be
packed into a bin from its arrival to its departure. Migration to another bin is
not allowed and the items are oriented and cannot be rotated. Yet, repacking

1 The proposed classes are not necessarily disjoint while a packing scheme is a collec-
tion of disjoint classes that cover all types of items.

Table 2. Types of unit fraction items considered

T(1, 1) T(1, 1
2
) T(1

2
, 1) T(1

2
, 1
2
) T(1,≤ 1

3
) T(1

2
,≤ 1

3
) T(≤ 1

3
,≤1)

Table 3. The 2-D results of [20] for unit-fraction items

Scheme in [20]

Classes Types of items Competitive ratios

Class A T(≤ 1
3
,≤1) 3 [20]

Class B T(1
2
, 1),T(1

2
, 1
2
),T(1

2
,≤ 1

3
) 2 [20]

Class C T(1, 1),T(1, 1
2
),T(1,≤ 1

3
) 2.4842 [15]

Overall All items 7.4842

of items within the same bin is permitted2. The load refers to the total area or
volume of a set of 2-D or 3-D items, respectively. The objective of the problem
is to minimize the total number of bins used over all time. For both 2-D and
3-D, we consider two types of input: unit fraction and power fraction items.

A general size item is an item such that the length in each dimension is in
(0, 1]. A unit fraction (UF) item is an item with lengths of the form 1

k , where
k ≥ 1 is an integer. A power fraction (PF) item has lengths of the form 1

2k
,

where k ≥ 0 is an integer.
A packing is said to be feasible if all items do not overlap and the packing

in each bin does not exceed the boundary of the bin; otherwise, the packing is
said to overflow and is infeasible.

Some of the algorithms discussed in this paper repack existing items (and
possibly include a new item) in a bin to check if the new item can be packed into
this bin. If the repacking is infeasible, it is understood that we would restore the
packing to the original configuration.

For 2-D items, we use the notation T(w, h) to refer to the type of items with
width w and height h. We use ‘∗’ to mean that the length can take any value
at most 1, e.g., T(∗, ∗) refers to all items. The parameters w (and h) may take
an expression ≤ x meaning that the width is at most x. For example, T(12 ,≤ 1

2)
refers to the items with width 1

2 and height at most 1
2 . In the following discussion,

we divide the items into seven disjoint types as showed in Table 2.
The bin assignment algorithm that we use for all types of 2-D and 3-D unit

and power fraction items is the First-Fit (FF) algorithm. When a new item
arrives, if there are occupied bins in which the item can be repacked, FF assigns
the new item to the bin which has been occupied for the longest time.

Remark on Existing Result on Unit Fraction Items. Using this notation,
the algorithm in [20] effectively classifies unit fraction items into the classes as
shown in Table 3. Items in the same class are packed separately, independent of

2 If rearrangement within a bin is not allowed, one can show that there is no constant
competitive deterministic online algorithm.

other classes. The overall competitive ratio is the sum of the competitive ratios
of all classes. By the result in [15], the competitive ratio for Class C reduces from
2.788 [9] to 2.4842 [15] and the overall competitive ratio immediately reduces
from 7.778 to 7.4842.

Corollary 1. The 2-D packing algorithm in [20] is 7.4842-competitive for UF
items.

Remarks on Using Classification of Items. To motivate our usage of clas-
sification of items, let us first consider algorithms that do not use classification.
In the full paper, we show that the family of any-fit algorithms is unbounded
for 2-D general size items (Lemma 1). When a new item R arrives, if there are
occupied bins in which R can be packed (allowing repacking for existing items),
the algorithms assign R to one of these bins as follows: First-Fit (FF) assigns R
to the bin which has been occupied for the longest time; Best-Fit (BF) assigns R
to the heaviest loaded bin with ties broken arbitrarily; Worst-Fit (WF) assigns
R to the lightest loaded bin with ties broken arbitrarily; Any-Fit (AF) assigns
R to any of the bins arbitrarily.

Lemma 1. The competitive ratio of the any-fit family of algorithms (First-Fit,
Best-Fit, Worst-Fit, and Any-Fit) for the online dynamic bin packing problem
of 2-D general size items with no classification of items is unbounded.

When the items are unit fraction and no classification is used, we can show
that FF is not c-competitive for any c < 5.4375, BF is not c-competitive for any
c < 9, and WF is not c-competitive for any c < 5.75. The results hold even for
power fraction items. These results are in contrast to the lower bound of 3.70301
of unit fraction items for any algorithm [13].

Repacking. To determine if an item can be packed into an existing bin, we will
need some repacking. Here we make some simple observations about the load
of items if repacking is not feasible. We first note the following lemma which is
implied by Theorem 1.1 in [18].

Lemma 2 ([18]). Given a bin with width u and height v, if all items have width
at most u

2 and height at most v, then any set of these items with total area at
most uv

2 can fit into the same bin by using Steinberg’s algorithm.

The implication of Lemma 2 is that if packing a new item of width w ≤ u
2

and height h into a bin results in infeasible packing, then the total load of the
existing items is at least uv

2 − wh.

Lemma 3. Consider packing of two types of items T(12 ,≤ h) and T(1, ∗), for
some 0 < h < 1. If we have an item of type T(1, h′) that cannot be packed to an
existing bin, then the current load of the bin is at least 1− h

2 − h′.

Proof. We first pack all items with width 1, including the new type T(1, h′)
item, one by one on top of the previous one. For the remaining space, we divide
it into two equal halves each with width 1

2 . We then try to pack the T(12 ,≤ h)

1
2

1
2

< h

(a)

x1 x6 x5 x4 x3

(b)

Fig. 1. (a) Infeasible repacking of existing items of types T(1,≤ 1
3
) and T(1

2
,≤ 1

3
) and

a new item of type T(1, ∗). The empty space has width 1
2
and height less than h. (b)

Illustration of the proof of Lemma 8. In each set of bins, the shaded items are the item
types that do not appear in subsequent bins. For example, items of type T(1

2
,≤ 1

3
) in

the first x1 bins do not appear in the subsequent bins.

Table 4. Values of β 〈x, y〉 for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6

β 〈x, y〉 y = 3 4 5 6

x = 3 1 1 1 1

4 3
4

5
6
= 1

3
+ 1

4
+ 1

4
5
6

11
12

= 2
3
+ 1

4

5 7
10

= 1
4
+ 1

4
+ 1

5
47
60

= 1
3
+ 1

4
+ 1

5
5
6

17
20

= 1
4
+ 3

5

6 7
10

23
30

= 1
6
+ 3

5
49
60

= 1
4
+ 1

6
+ 2

5
17
20

items into one compartment until it overflows, and then continue packing into
the other compartment. The space left in the second compartment has a height
less than h, otherwise, the overflow item can be packed there (see Figure 1(a)).
As a result, the total load of items is at least 1 − h

2 . Since the new item has a

load of h′, the total load of existing items is at least 1− h
2 − h′ as claimed. ⊓⊔

In the case of 1-D packing, Chan et al. [4] have defined the following notion.
Let x and y be positive integers. Suppose that a 1-D bin is already packed
with some items whose sizes are chosen from the set {1, 12 , . . . , 1

x}. They defined
the notion of the minimum load of such a bin that an additional item of size
1
y cannot fit into the bin. We modify this notion such that the set in concern

becomes { 1
3 ,

1
4 , . . . ,

1
x}. We define β 〈x, y〉 to be the minimum load of this bin

containing items with length at least 1
x and at most 1

3 such that an item of size
1
y cannot be packed into this bin. Precisely,

β 〈x, y〉 = min
3≤j≤x and nj≥0

{n3

3
+

n4

4
+ . . .+

nx

x
| n3

3
+

n4

4
+ . . .+

nx

x
> 1− 1

y
}.

Table 4 shows the values of this function for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6.

Table 5. Classifications of 2-D unit fraction items and their competitive ratios

Classes Types of items Competitive ratios

Class 1 T(≤ 1
3
,≤1) 2.8258

Class 2 T(1,≤ 1
3
), T(1

2
,≤ 1

3
) 1.7804

Class 3 T(1, 1), T(1, 1
2
), T(1

2
, 1), T(1

2
, 1
2
) 2.25

Class 4 T(1, 1
2
), T(1,≤ 1

3
), T(1

2
, 1
2
), T(1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T(1
2
, 1) 1.5

3 Classification of 2-D Unit Fraction Items

Following the idea in [20], we also divide the type of items into classes. In Table 5,
we list the different classes we considered in this paper. We propose two packing
schemes, each of which makes use of a subset of the classes that are disjoint.
The competitive ratio of a packing scheme is the sum of the competitive ratio
we can achieve for each of the classes in the scheme. In this section, we focus on
individual classes and in the next section, we discuss the two packing schemes.
For each class, we use FF (First-Fit) to determine which bin to assign an item.
For each bin, we check if the new item can be packed together with the existing
items in the bin; this is done by some repacking procedures and the repacking
is different for different classes.

Class 5: T(1, 1),T(1
2
, 1)

This is a simple case and we skip the details.

Lemma 4. FF is 1.5-competitive for UF items of types T(1, 1) and T(12 , 1).

Class 3: T(1, 1),T(1, 1
2
),T(1

2
, 1),T(1

2
, 1
2
)

We now consider Class 3 for which both the width and height are at least 1
2 .

Lemma 5. FF is 2.25-competitive for UF items of types T(1, 1),T(1, 12),T(
1
2 , 1),

T(12 ,
1
2).

Proof. Suppose the maximum load at any time is n. Then OPT uses at least
n bins. Let x1 be the last bin that FF ever packs a T(12 ,

1
2)-item, x1 + x2 for

T(1, 1
2) and T(12 , 1), and x1 + x2 + x3 for T(1, 1). When FF packs a T(12 ,

1
2)-

item to bin-x1, all the x1 − 1 before that must have a load of 1. Therefore,
(x1 − 1) + 1

4 ≤ n. When FF packs a T(1, 1
2) or T(

1
2 , 1)-item to bin-(x1 + x2), all

the bins before that must have a load of 1
2 . Hence,

x1+x2

2 ≤ n. When FF packs
a T(1, 1)-item to bin-(x1 + x2 + x3), the first x1 bins must have a load of at
least 1

4 , the next x2 bins must have a load of at least 1
2 , and the last x3 − 1 bins

must have a load of 1. Therefore, x1

4 + x2

2 + (x3 − 1) + 1 ≤ n. The maximum
value of x1 + x2 + x3 is obtained by setting x1 = x2 = n and x3 = n

4 . Then,
x1 + x2 + x3 = 2.25n ≤ 2.25OPT . ⊓⊔

Class 2: T(1,≤1
3
),T(1

2
,≤1

3
)

We now consider items whose width is at least 1
2 and height is at most 1

3 . For
this class, the repack when a new item arrives is done according to the description
in the proof of Lemma 3. We are going to show that FF is 1.7804-competitive
for Class 2.

Suppose the maximum load at any time is n. Let x1 be the last bin that FF
ever packs a T(12 ,≤ 1

3)-item. Using the analysis in [9] for 1-D items with size at
most 1

3 , one can show that x1 ≤ 1.4590n.

Lemma 6 ([9]). Suppose we are packing UF items of types T(1,≤ 1
3),T(

1
2 ,≤ 1

3)
and the maximum load over time is n. We have x1 ≤ 1.4590n, where x1 is the
last bin that FF ever packs a T(12 ,≤ 1

3)-item.

Lemma 6 implies that FF only packs items of T(1,≤1
3) in bin-y for y >

1.459n. The following lemma further asserts that the height of these items is at
least 1

6 .

Lemma 7. Suppose we are packing UF items of types T(1,≤ 1
3),T(

1
2 ,≤1

3) and
the maximum load over time is n. Any item that is packed by FF to bin-y, for
y > 1.459n, must be of type T(1, h), where 1

6 ≤ h ≤ 1
3 .

Proof. Suppose on the contrary that FF packs a T(1,≤ 1
7)-item in bin-y for

y > 1.459n. This means that packing the item in any of the first 1.459n bins
results in an infeasible packing. By Lemma 3, with h = 1

3 and h′ = 1
7 , the load

of each of the first 1.459n bins is at least 1 − 1
6 − 1

7 = 0.69. Then the total is
at least 1.459n× 0.69 > 1.0067n, contradicting that the maximum load at any
time is n. Therefore, the lemma follows. ⊓⊔

Lemma 8. FF is 1.7804-competitive for UF items of types T(1,≤ 1
3), T(

1
2 ,≤1

3).

Proof. Figure 1(b) gives an illustration. Let (x1 + x6), (x1 + x6 + x5), (x1 + x6 +
x5 + x4), and (x1 + x6 + x5 + x4 + x3) be the last bin that FF ever packs a
T(1, 1

6)-, T(1,
1
5)-, T(1,

1
4)-, and T(1, 1

3)- item, respectively. When FF packs a
T(1, 1

6)-item to bin-(x1+x6), the load of the first x1 is at least 1− 1
6 − 1

6 = 2
3 , by

Lemma 3. By Lemma 7, only type T(1, k)-item, for 1
6 ≤ k ≤ 1

3 , could be packed
in the x6 bins. These items all have width 1 and thus can be considered as 1-D
case. Therefore, when we cannot pack a T(1, 16)-item, the current load must be
at least β 〈6, 6〉. Then we have x1(

2
3) + x6 β 〈6, 6〉 ≤ n. Similarly, we have

1. x1(
2
3) + x6 β 〈6, 6〉 ≤ n,

2. x1(1− 1
6 − 1

5) + x6 β 〈6, 5〉+ x5 β 〈5, 5〉 ≤ n,
3. x1(1− 1

6 − 1
4) + x6 β 〈6, 4〉+ x5 β 〈5, 4〉+ x4 β 〈4, 4〉 ≤ n,

4. x1(1− 1
6 − 1

3) + x6 β 〈6, 3〉+ x5 β 〈5, 3〉+ x4 β 〈4, 3〉+ x3 β 〈3, 3〉 ≤ n.

We note that for each inequality, the coefficients are increasing, e.g., for (1),
we have 2

3 ≤ β 〈6, 6〉 = 17
20 , by Table 4. Therefore, the maximum value of x1 +

x6 + x5 + x4 + x3 is obtained by setting the maximum possible value of x6

Table 6. Competitive ratios for 2-D unit fraction items

2DDynamicPackUFS1

Classes Types of items Competitive ratios

Class 1 T(≤ 1
3
,≤1) 2.8258

Class 4 T(1, 1
2
), T(1,≤ 1

3
), T(1

2
, 1
2
), T(1

2
,≤ 1

3
) 2.4593

Class 5 T(1, 1), T(1
2
, 1) 1.5

Overall All of the above 6.7850

satisfying (1), and then the maximum possible value of x5 satisfying (2), and so
on. Using Table 4, we compute the corresponding values as 1.4590n, 0.0322n,
0.0597n, 0.0931n and 0.1365n, respectively. As a result, x1+x6+x5+x4+x3 ≤
1.7804n ≤ 1.7804OPT . ⊓⊔

Class 1: T(≤1
3
,≤1)

Items of type T(≤ 1
3 ,≤1) are further divided into three subtypes: T(≤ 1

3 ,≤ 1
3),

T(≤ 1
3 ,

1
2), and T(≤ 1

3 , 1). We describe how to repack these items and leave the
analysis in the full paper.

1. When the new item is T(≤ 1
3 ,≤1

3), we use Steinberg’s algorithm [18] to repack
the new and existing items. Note that the item width satisfies the criteria of
Lemma 2.

2. When the new item is T(≤ 1
3 ,

1
2) or T(≤ 1

3 , 1) and the bin contains T(≤1
3 ,≤ 1

3)-
item, we divide the bin into two compartments, one with width 1

3 and the
other 2

3 and both with height 1. We reserve the small compartment for the
new item and try to repack the existing items in the large compartment
using Steinberg’s algorithm. This idea originates from [20].

3. When the new item is T(≤ 1
3 ,

1
2) or T(≤ 1

3 , 1) and the bin does not contain
T(≤ 1

3 ,≤1
3)-item, we use the repacking method as in Lemma 3 but with

the width becoming the height and vice versa. Note that this implies that
Lemma 8 applies for these items.

Lemma 9. FF is 2.8258-competitive for UF items of type T(≤ 1
3 ,≤1).

Class 4: T(1, 1
2
),T(1,≤1

3
),T(1

2
, 1
2
),T(1

2
,≤1

3
)

The analysis of Class 4 follows a similar framework as in Class 2. We state
the result (Lemma 10) and leave the proof in the full paper.

Lemma 10. FF is 2.4593-competitive for UF items of types T(1, 1
2), T(1,≤1

3),
T(12 ,

1
2), T(

1
2 ,≤1

3).

4 Packing of 2-D Unit Fraction Items

Our algorithm, named as 2DDynamicPackUF, classifies items into classes and
then pack items in each class independent of other classes. In each class, FF is

Table 7. Competitive ratios for 2-D power fraction items. Marked with [*] are the
competitive ratios that are reduced as compared to unit fraction items.

2DDynamicPackPF

Class Types of items Competitive ratios

Class 1 T(≤ 1
4
,≤1) 2.4995 [*]

Class 2 T(1,≤ 1
4
), T(1

2
,≤ 1

4
) 1.496025 [*]

Class 3 T(1, 1), T(1, 1
2
), T(1

2
, 1), T(1

2
, 1
2
) 2.25

Overall All items 6.2455

used to pack the items as described in Section 3. In this section, we present two
schemes and show their competitive ratios.

Table 6 shows the classification and associated competitive ratios for 2D-
DynamicPackUFS1. This scheme contains Classes 1, 4, and 5, covering all items.

Theorem 1. 2DDynamicPackUFS1 is 6.7850-competitive for 2-D UF items.

Scheme 2DDynamicPackUFS2 has a higher competitive ratio than Scheme
2DDynamicPackUFS1, nevertheless, Scheme 2DDynamicPackUFS2 has a smaller
competitive ratio for power fraction items to be discussed in the next section.
2DDynamicPackUFS2 contains Classes 1, 2, and 3, covering all items.

Lemma 11. 2DDynamicPackUFS2 is 6.8561-competitive for 2-D UF items.

5 Adaptations to Other Scenarios

In this section we extend our results to other scenarios.

2-D Power Fraction Items. Table 7 shows a scheme based on 2DDynamic-
PackUFS2 for unit fraction items and the competitive ratio is reduced to 6.2455.

Theorem 2. 2DDynamicPackPF is 6.2455-competitive for 2-D PF items.

3-D Unit and Power Fraction Items. The algorithm in [20] effectively classi-
fies the unit fraction items as shown in Table 8(a). The overall competitive ratio
reduces from 22.788 to 21.6108. For power fraction items we slightly modify the
classification for 3-D items, such that boundary values of 1

3 are replaced by 1
4 .

Table 8(b) details this classification. The overall competitive ratio reduces to
20.0783. We state the following theorem and leave the proof in the full paper.

Theorem 3. (1) Algorithm 3DDynamicPackUF is 21.6108-competitive for UF
items and (2) algorithm 3DDynamicPackPF is 20.0783-competitive for PF items.

Table 8. (a) Competitive ratios for 3-D UF items. [*] This result uses Theorem 1. [**]
This result uses Lemma 9. (b) Competitive ratios for 3-D PF items. [*] This result uses
Theorem 2. [**] This result uses the competitive ratio of Class 1 2-D PF items.

(a)

3DDynamicPackUF [20]

Classes Types of items
Competitive

ratios

Class 1 T(> 1
2
, ∗, ∗) 6.7850 [*]

Class 2 T(≤ 1
2
, > 1

2
, ∗) 4.8258 [**]

Class 3 T(≤ 1
2
, (1

3
, 1
2
], ∗) 4

Class 4 T(≤ 1
2
,≤ 1

3
, ∗) 6

Overall All items 21.6108

(b)

3DDynamicPackPF

Classes Types of items
Competitive

ratios

Class 1 T(> 1
2
, ∗, ∗) 6.2455 [*]

Class 2 T(≤ 1
2
, > 1

2
, ∗) 4.4995 [**]

Class 3 T(≤ 1
2
, (1

4
, 1
2
], ∗) 4

Class 4 T(≤ 1
2
,≤ 1

4
, ∗) 5.334

Overall All items 20.0783

6 Conclusion

We have extended the study of 2-D and 3-D dynamic bin packing problem to
unit and power fraction items. We have improved the competitive ratios that
would be obtained using only existing results for unit fraction items from 7.4842
to 6.7850 for 2-D, and from 22.4842 to 21.6108 for 3-D. For power fraction items,
the competitive ratios are further reduced to 6.2455 and 20.0783 for 2-D and 3-
D, respectively. Our approach is to divide items into classes and analyzing each
class individually. We have proposed several classes and defined different packing
schemes based on the classes. This approach gives a systematic way to explore
different combinations of classes.

An open problem is to further improve the competitive ratios for various
types of items. The gap between the upper and lower bounds could also be
reduced by improving the lower bounds. Another problem is to consider multi-
dimensional bin packing. For d-dimensional static and dynamic bin packing, for
d ≥ 2, the competitive ratio grows exponentially with d. Yet there is no matching
lower bound that also grows exponentially with d. It is believed that this is the
case [11] and any such lower bound would be of great interest.

Another direction is to consider the packing of unit fraction and power frac-
tion squares, where all sides of an item are the same length. We note that the
competitive ratio for the packing of 2-D unit fraction square items would reduce
to 3.9654 compared to the competitive ratio of 2-D general size square items of
4.2154 [13]. For 3-D unit fraction squares, this would reduce to 5.24537 compared
to 5.37037 for 3-D general size squares [13].

References

1. A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems.
SIAM J. Comput., 32:1091–1113, April 2003.

2. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. ACM Trans. Algorithms, 3, August 2007.

3. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

4. J. W.-T. Chan, T.-W. Lam, and P. W. H. Wong. Dynamic bin packing of unit
fractions items. Theoretical Computer Science, 409(3):521 – 529, 2008.

5. J. W.-T. Chan, P. W. H. Wong, and F. C. C. Yung. On dynamic bin packing: An
improved lower bound and resource augmentation analysis. Algorithmica, 53:172–
206, February 2009.

6. E. G. Coffman Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R.
Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I: Perfect
packing theorems and the average case behavior of optimal packings. SIAM J.
Discrete Math., 13:38–402, 2000.

7. E. G. Coffman Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approxima-
tion algorithms: Combinatorial analysis. In D. Z. Du and P. M. Pardalos, editors,
Handbook of Combinatorial Optimization, 1998.

8. E. G. Coffman Jr., M. R. Garey, and D. Johnson. Bin packing with divisible item
sizes. Journal of Complexity, 3:405–428, 1987.

9. E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
J. Comput., 12(2):227–258, 1983.

10. E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: A survey. In D. S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, pages 46–93. PWS Publishing, 1996.

11. D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: Algo-
rithms and worst-case analysis. Operations Research Letters, 8(1):17–20, 1989.

12. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, On-line Algorithms–The State of the Art, pages 147–
177. Springer, 1996.

13. L. Epstein and M. Levy. Dynamic multi-dimensional bin packing. J. of Discrete
Algorithms, 8:356–372, December 2010.

14. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

15. X. Han, C. Peng, D. Ye, D. Zhang, and Y. Lan. Dynamic bin packing with unit
fraction items revisited. Inf. Process. Lett., 110:1049–1054, November 2010.

16. K. Jansen and R. Thöle. Approximation algorithms for scheduling parallel jobs:
Breaking the approximation ratio of 2. In L. Aceto, I. Damg̊ard, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008,
volume 5125 of LNCS, pages 234–245. Springer Berlin Heidelberg, 2008.

17. F. Miyazawa and Y. Wakabayashi. Two- and three-dimensional parametric pack-
ing. Computers & Operations Research, 34(9):2589 – 2603, 2007.

18. A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comput., 26(2):401–409, 1997.

19. R. van Stee. Combinatorial algorithms for packing and scheduling problems. Habili-
tation thesis, Universität Karlsruhe, June 2008. Available at http://www.mpi-inf.
mpg.de/~vanstee/habil.pdf. Accessed November 2012.

20. P. W. H. Wong and F. C. C. Yung. Competitive multi-dimensional dynamic bin
packing via L-shape bin packing. In E. Bampis and K. Jansen, editors, WAOA
2009, volume 5893 of LNCS, pages 242–254. Springer Berlin Heidelberg, 2010.

21. P. W. H. Wong, F. C. C. Yung, and M. Burcea. An 8/3 lower bound for online
dynamic bin packing. In K.-M. Chao, T.-S. Hsu, and D.-T. Lee, editors, ISAAC
2012, volume 7676 of LNCS, pages 44–53. Springer Berlin Heidelberg, 2012.

Scheduling for Electricity Cost in Smart Grid

Mihai Burcea1, Wing-Kai Hon2, Hsiang-Hsuan Liu2,
Prudence W.H. Wong1, and David K. Y. Yau3

1 Department of Computer Science, University of Liverpool, UK
{m.burcea,pwong}@liverpool.ac.uk

2 Department of Computer Science, National Tsing Hua University, Taiwan
{wkhon,hhliu}@cs.nthu.edu.tw

3 Department of Computer Science, Purdue University, US.
yau@cs.purdue.edu

Abstract. We study an offline scheduling problem arising in demand
response management in smart grid. Consumers send in power requests
with a flexible set of timeslots during which their requests can be served.
For example, a consumer may request the dishwasher to operate for 30
minutes during the periods 8am to 11am or 2pm to 4pm. The grid con-
troller, upon receiving power requests, schedules each request within the
specified duration. The electricity cost is measured by a convex function
of the load in each timeslot. The objective of the problem is to schedule
all requests with the minimum total electricity cost. As a first attempt,
we consider a special case in which the power requirement and the du-
ration a request needs service are both unit-size. For this problem, we
present a polynomial time offline optimal algorithm and show that the
time complexity can be further improved if the given set of timeslots is
a contiguous interval.

1 Introduction

We study an offline scheduling problem arising in “demand response man-
agement” in smart grid [6, 7, 15]. The electrical smart grid is one of the
major challenges in the 21st century [5, 22, 23]. The smart grid uses in-
formation and communication technologies in an automated fashion to
improve the efficiency and reliability of production and distribution of
electricity. Peak demand hours happen only for a short duration, yet
makes existing electrical grid less efficient. It has been noted in [4] that in
the US power grid, 10% of all generation assets and 25% of distribution
infrastructure are required for less than 400 hours per year, roughly 5%
of the time [23]. Demand response management attempts to overcome
this problem by shifting users’ demand to off-peak hours in order to re-
duce peak load [3, 9, 14, 17, 18, 20]. This is enabled technologically by the
advances in smart meters [10] and integrated communication. Research

2 Burcea, Hon, Liu, Wong, Yau

initiatives in the area include GridWise [8], the SeeLoadTM system [13],
EnviroGridTM [19], peak demand [21], etc.

The smart grid operator and consumers communicate through smart
metering devices. We assume that time is divided into integral timeslots.
A consumer sends in a power request with the power requirement, re-
quired duration of service, and the time intervals that this request can
be served (giving some flexibility). For example, a consumer may want
the dishwasher to operate for 30 minutes during the periods from 8am to
11am or 2pm to 4pm. The grid operator upon receiving all requests has
to schedule them in their respective time intervals using the minimum
energy cost. The load of the grid at each timeslot is the sum of the power
requirements of all requests allocated to that timeslot. The energy cost
is modeled by a convex function on the load. As a first attempt to the
problem, we consider in this paper the case that the power requirement
and the duration of service requested are both unit-size, a request can
specify several intervals during which the request can be served, and the
power cost function is any convex function.

Previous work. Koutsopoulos and Tassiulas [9] has formulated a
similar problem to our problem where the cost function is piecewise lin-
ear and presented a fractional solution. They also consider online al-
gorithms as well. Salinas et al. [20] considered a multi-objective prob-
lem to minimize energy consumption cost and maximize some utility.
A closely related problem is to manage the load by changing the price
of electricity over time, which has been considered in a game theoretic
manner [3, 17, 18]. Heuristics have also been developed for demand side
management [14]. Other aspects of smart grid have also been considered,
e.g., communication [4, 11, 12], security [16]. Reviews of smart grid can
be found in [6, 7, 15].

The combinatorial problem we defined in this paper has analogy to the
traditional load balancing problem [2] in which the machines are like our
timeslots and the jobs are like our power requests. The main difference is
that the aim of load balancing is usually to minimize the maximum load
of the machines. Another related problem is deadline scheduling with
speed scaling [1, 24] in which the cost function is also a convex function,
nevertheless a job can be served using varying speed of the processor.

Our contributions. In this paper we study an optimization problem
in demand response management in which requests have unit power re-
quirement, unit duration, arbitrary timeslots that the jobs can be served,
and the cost function is a general convex function. We propose a poly-
nomial time offline algorithm and show that it is optimal. We show that

Scheduling for Electricity Cost in Smart Grid 3

the time complexity of the algorithm is O(|J |n(|J |+n)), where J is the
set of jobs and n is the number of timeslots. We further show that if the
feasible timeslots for each job to be served forms a contiguous interval,
we can improve the time complexity to O(|J |n(log |J | + log n)) using
dynamic range minimum query data structure.

Technically speaking, we use a notion of “feasible graph” to represent
alernative assignments. After scheduling a job, we can look for improve-
ment via this feasible graph. We show that we can maintain optimality
each time a job is scheduled. For the analysis, we compare our schedule
with an optimal schedule via the notion of “agreement graph”, which
captures the difference of our schedule and an optimal schedule. We then
show that we can transform our schedule stepwise to improve the agree-
ment with the optimal schedule, without increasing the cost, thus proving
the optimality of our algorithm.

2 Preliminaries

We consider an offline scheduling problem where the input consists of
a set of unit-sized jobs J . The time is divided into integral timeslots
T = {1, 2, 3, . . . , n} and each job Ji ∈ J is associated with a set of feasible
timeslots Ii ⊆ T , in which it can be scheduled. In this model, each job Ji
must be assigned to exactly one feasible timeslot from Ii. The load `(t) of
a timeslot t represents the total number of jobs assigned to the timeslot.
We consider a general convex cost function f that measures the cost used
in each timeslot t based on the load at t. The total cost used is the sum of
cost over time. Over all timeslots this is

∑
t∈T f(`(t)). The objective is to

find an assignment of all jobs in J to feasible timeslots such that the total
cost is minimized. We first describe the notions required for discussion.

Feasible graph. Given a particular job assignment A, we define a
feasible graph G which is a directed multi-graph that shows the potential
allocation of each job in alternative assignments. In G each timeslot is
represented by a vertex. If job Ji is assigned to timeslot r in A, then for
all w ∈ Ii\{r} we add a directed edge (r, w) with Ji as its label.

Legal-path in a feasible graph. A path (t, t′) in a feasible graph
G is a legal-path if and only if the load of the starting point t is at least
2 more than the load of the ending point t′, i.e., `(t)− `(t′) ≥ 2.

Agreement graph. We define an agreement graph Ga(A,A∗) which
is a directed multi-graph that measures the difference between a job as-
signment solution A and an optimal assignment A∗. In Ga(A,A∗) each
timeslot is represented by a vertex. For each job Ji such that Ji is assigned

4 Burcea, Hon, Liu, Wong, Yau

to different timeslots in A and A∗, we add an arc from t to t′, where t and
t′ are the timeslots that Ji is assigned to by A and A∗, respectively. The
arc (t, t′) is labelled by the tuple (Ji, +/−/=). The second value in the
tuple is “+” or “−” if moving job Ji from timeslot t to timeslot t′ causes
the total cost of assignment A to increase or decrease, respectively. The
value is “=” if moving the job does not cause any change in the total cost
of assignment A.

Observation 1. By moving Ji from t1 to t2 the overall energy cost (i)
decreases if `(t1) > `(t2) + 1, (ii) remains the same if `(t1) = `(t2) + 1,
and (iii) increases if `(t1) < `(t2) + 1.

3 The Optimal Offline Algorithm

Description of the Algorithm. We propose an optimal offline algo-
rithm that minimizes the total cost. The algorithm arranges the jobs in
J in arbitrary order, and runs in steps. At Step i, we assign job Ji to a
feasible timeslot with minimum load, breaking ties arbitrarily. Suppose
job Ji is assigned to timeslot t. We update the feasible graph G to reflect
this assignment in the following way. If applicable, we add arcs from t
labelled by Ji to any other feasible timeslots (vertices) of Ji. Finally, the
algorithm checks if there exists any directed legal-path in G from t to
any other vertex t′. Recall that in this legal-path the difference between
the load of the vertices t and t′ is greater than 1, i.e., `(t)− `(t′) > 1. If
such a legal-path exists, the algorithm executes a shift whereby for each
job corresponding to an arc on this path, it is moved from the original
assigned timeslot to the timeslot determined by the corresponding arc.
More precisely, if the path contains an arc (r, w) with J as its label, then
job J is moved from r to w. At the end, the algorithm updates the feasible
graph G to reflect this shift. Figure 1 shows an example of the algorithm.

To ease the discussion, in the remainder of the paper, we use `′i(t) to
represent the load of timeslot t after adding Ji (but before the shift), `i(t)
to represent the load of timeslot t at the end of Step i, and `′i(s, t) and
`i(s, t) to represent `′i(s)− `′i(t) and `i(s)− `i(t), respectively.

4 Correctness

In this section we prove that our algorithm is optimal. We show in
Lemma 3 that there is no legal-path after shifting in the algorithm and
in Lemma 6 that this implies that the schedule is optimal.

Scheduling for Electricity Cost in Smart Grid 5

1 00

J1

t1 t2 t3

(a) The feasible graph G after
adding job J1 to t1.

11 0

J1

J2

J2

t1 t2 t3

(b) The feasible graph G after
adding job J2 to t2.

12 0

J1

J2

J2

t1 t2 t3

11 1

J1

J2

J2t1 t2 t3

(c) Left: The feasible graph immediately after J3 is added to slot t1. The path (t1, t3)
is a legal-path and we shift by moving J1 to t2 and J2 to t3. Right: The feasible graph
after the shift, with no more legal-paths.

Fig. 1: Let J = {J1, J2, J3}, T = {t1, t2, t3}, I1 = {t1, t2}, I2 = {t1, t2, t3}, and
I3 = {t1}. The number inside the vertices denotes their load. Suppose the algorithm
schedules the jobs in order of their indices. (a) and (b) Jobs J1 and J2 are arbitrarily
assigned their feasible minimum load slots. (c) A legal-path and the corresponding shift
after assigning J3.

Lemma 1. Suppose that before adding job Ji to timeslot r the feasible
graph G has no legal-path. If there is any legal-path after adding Ji, there
is at least one legal-path starting from r.

Proof. Assume that there is a legal-path (s, t) after assigning Ji to time-
slot r, so that `′i(s, t) ≥ 2. If r = s, we have obtained a desired legal-path.
Otherwise, r 6= s, there are two cases:

Case 1. G contains an (s, t) path before adding Ji. Since r 6= s, `i−1(s) =
`′i(s) and `i−1(t) ≤ `′i(t) (the latter inequality comes from the fact that r
may be equal to t). This implies `i−1(s, t) ≥ `′i(s, t) ≥ 2, which contradicts
the precondition that there is no legal-path before adding Ji. Thus, Case
1 cannot occur.

Case 2. G does not contain any (s, t) path before adding Ji. Since (s, t)
becomes a legal-path after adding Ji, it must be the case that assigning Ji
to timeslot r adds some new edge (r, w) (with Ji as its label) to G, which
connects an existing (s, r) path and an existing (w, t) path. We know that
`i−1(s)−`i−1(r) ≤ 1 because there is no legal-path before adding Ji. Also,
`′i(s) = `i−1(s) and `′i(r) = `i−1(r) + 1 because the new job Ji is assigned
to r, with r 6= s. Hence, `′i(r, t) ≥ `′i(s, t), so that the (r, t) subpath is also
a legal-path. ut

6 Burcea, Hon, Liu, Wong, Yau

Lemma 2. If before adding a job the feasible graph G does not have a
legal-path, then after adding one more job there will be no legal-paths
where the load of the starting point is at least 3 more than the load of
the ending point. In other words, the load difference corresponding to any
new legal-path, if it exists, is exactly 2.

Proof. Suppose that before adding a job there is no legal-path in the
feasible graph G. That is, `i−1(s, t) ≤ 1 for any path (s, t) in G with
starting point s and ending point t. Now assume on the contrary that
there is a legal-path (s, t) with `′i(s, t) ≥ 3. There are two cases:

Case 1. G contains an (s, t) path before adding job Ji. Adding a job at
timeslot r increases by one on the load difference of any path starting
from r. On the other hand, the load difference of any path ending at r
is decreased by one. Recall that `′i(s, t) ≥ 3. There are three situations:
(i) Job Ji is assigned to timeslot s, implying `i−1(s, t) ≥ 2; (ii) Job Ji
is assigned to timeslot t, which implies `i−1(s, t) ≥ 4; (iii) Job Ji is not
assigned to timeslot s or time t, which implies `i−1(s, t) ≥ 3. Each of these
cases contradicts the fact that G has no legal-path before adding Ji.

Case 2. G does not contain any (s, t) path before adding job Ji. That
is, adding job Ji create a new legal-path (s, t) with `′i(s, t) ≥ 3. There are
two sub-cases (see Figure 2 for an illustration):

Case 2-1. Job Ji is assigned to timeslot s. Since (s, t) becomes a new
legal-path after adding job Ji, it must be the case that there is some new
edge (s, w) added in G that connects s with an existing (w, t) path. The
edge (s, w) means that job Ji can be assigned to either timeslot s or w.
Then, we have `i−1(s) = `′i(s) − 1, `i−1(t) = `′i(t), and according to our
assumption, `′i(s, t) ≥ 3. Since there is no legal-path before adding job Ji,
`i−1(w, t) ≤ 1. Hence, `i−1(s) − `i−1(w) ≥ 1, which contradicts the fact
that Ji is assigned to a feasible timeslot with minimum load.

Case 2-2. The job Ji is assigned to timeslot r with r 6= s. Since (s, t)
becomes a new legal-path after adding job Ji, it must be the case that
there is some new edge (r, w) added in G that connects an existing (s, r)
path with an existing (w, t) path. Because there is no legal-path before
adding job Ji, `i−1(s, r) ≤ 1 and `i−1(w, t) ≤ 1. According to our assump-
tion, `′i(s, t) ≥ 3; this implies `i−1(s, t) ≥ 3, so that `i−1(r)− `i−1(w) ≥ 1.
The latter inequality contradicts the fact that Ji is assigned to a feasible
timeslot with minimum load. ut

Based on Lemmas 1 and 2, we are ready to prove a key lemma for the
correctness of our proposed algorithm.

Scheduling for Electricity Cost in Smart Grid 7

Lemma 3. Suppose that G is a feasible graph with no legal-paths. Then
after adding a job and executing the corresponding shift by the algorithm,
the resulting feasible graph has no legal-paths.

Proof. Suppose that there were no legal-paths in G after Step i− 1, but
there is a new legal-path in G after assigning Ji. By Lemma 1, there
must be one such legal-path (s, t) where s is the timeslot assigned to
Ji, and without loss of generality, let it be the one that is selected by
our algorithm to perform the corresponding shift. Let the ordering of the
vertices in the path be [s, v1, v2, . . . , vk, t], and P denote the set of these
vertices.

We define In(r) to be the set of vertices w such that a (w, r) path exists
before adding Ji, and Out(r) to be the set of vertices w such that an (r, w)
path exists before adding Ji. We assume that r ∈ In(r) and r ∈ Out(r)
for the ease of later discussion. Similarly, we define In ′′(r) to be the set
of vertices w such that a (w, r) path exists after shifting, and we define
Out ′′(r) analogously. Given a set R of vertices, let IN (R) =

⋃
r∈R In(r)

and OUT (R) =
⋃

r∈R Out(r). The notation IN ′′(R) and OUT ′′(R) are
defined analogously.

Briefly speaking, we upper bound the load of a vertex in IN ′′(P), and
lower bound the load of a vertex in OUT ′′(P), as any legal-path that
may exist after the shift must start from a vertex in IN ′′(P) and end at
a vertex in OUT ′′(P). Based on the bounds, we shall argue that there
are no legal-paths as the load difference of any path after the shift will
be at most 1. Note that after the shift, only the load of t is increased
by one, whereas the load of any other vertex remains unchanged. Now,
concerning the legal-path (s, t), there are two cases:
Case 1. There was an arc from s to v1 in the feasible graph G before
adding Ji. In this case, it is easy to check that IN ′′(P) ⊆ IN (P),§ and
OUT ′′(P) ⊆ OUT (P) ∪OUT (Ii).

‡

Suppose that `i−1(s) = x. Then, `i−1(t) = x − 1 because there is no
legal-path before adding Ji but there is one after adding Ji. This implies

§ Otherwise, let z be a vertex in IN ′′(P) but not in IN (P). Take the shortest path
from z to some vertex in P after the shift. Then all the intermediate vertices of such
a path are not from P . However, the jobs assigned to those intermediate vertices
are unchanged, so that such a path also exists before the shift, and z is in IN(P).
A contradiction occurs.

‡ Otherwise, let z be a vertex in OUT ′′(P) but not in OUT (P) ∪OUT (Ii). Take the
shortest path that goes to z starting from some vertex in P after the shift. Then
all the intermediate vertices of such a path are not from P . If such a path does not
involve vertices from Ii, then this path must exist before the shift, so that z is in
OUT (P). Else, z is in OUT (Ii). A contradiction occurs.

8 Burcea, Hon, Liu, Wong, Yau

`i−1(vh) ≤ x for any h ∈ [1, k], or there was a legal-path (vh, t) before
adding Ji. The load of any vertex in IN (P) is at most x or there was a
legal-path entering t before adding Ji. The load of any vertex in OUT (P)
is at least x− 1 or there was a legal-path leaving s before adding Ji. For
any vertex r in Ii, `i−1(r) ≥ x, since s ∈ Ii has the minimum load. This
implies that the load for any vertex in OUT (Ii) is at least x− 1, or there
was a legal-path leaving a vertex in Ii before adding Ji. Thus, after the
shift, the load of any vertex in IN ′′(P) is at most x, and the load of any
vertex in OUT ′′(P) is at least x− 1, so no legal-paths will exist.

Case 2. There were no arcs from s to v1 in the feasible graph G before
adding Ji. In this case, Ji must be involved in the shift, so that the jobs
assigned to s after the shift will be the same as if Ji was not added.
Consequently, if there is still a legal-path after the shift, the starting
vertex must be from IN ′′(P\{s}), while the ending vertex must be from
OUT ′′(P\{s}). Similar to Case 1, it is easy to check that IN ′′(P\{s}) ⊆
IN (P\{s}) and OUT ′′(P\{s}) ⊆ OUT (P\{s})∪OUT (Ii). Suppose that
`i−1(s) = x, so that `′i(s) = x+ 1. Because adding Ji creates a new legal-
path (s, t), by Lemma 2, `′i(t) = `i−1(t) = x − 1. Thus, the load of any
vertex in IN (P\{s}) is at most x, since there was no legal-path entering
t before adding Ji. On the other hand, `i−1(v1) ≥ x otherwise job Ji
would be assigned to v1. However, `i−1(v1) ≤ x or there is a legal-path
(v1, t). Hence, `i−1(v1) = x. This implies that the load of any vertex in
OUT (P\{s}) is at least x − 1, since there was no legal-path leaving v1
before adding Ji. As for the vertices in OUT (Ii), we can use a similar
argument as in Case 1 to show that their load is at least x − 1. Thus,
after the shift, the load of any vertex in IN ′′(P\{s}) is at most x, and
the load of any vertex in OUT ′′(P\{s}) is at least x− 1, so no legal-path
will exist. ut

We now prove in Lemma 6 (the remaining key lemma for the cor-
rectness) that if the assignment is optimal before a certain step of the
algorithm, it remains optimal after carrying out a shift in the algorithm.
To prove Lemma 6, we need to prove the following two lemmas.

Lemma 4. There exists an optimal assignment A∗ such that Ga(A,A∗)
is acyclic.

Proof (Sketch). Consider an optimal assignmentA∗∗ such thatGa(A,A∗∗)
contains directed cycles. We show that the assignment A∗∗ can be trans-
formed into an optimal assignment A∗ such that Ga(A,A∗) is acyclic.
For every cycle (s, t) such that s = t in Ga(A,A∗∗), one can show that

Scheduling for Electricity Cost in Smart Grid 9

the load of any vertex does not change after executing all the moves in
the cycle. This implies that the total cost of A∗∗ remains the same after
removing all cycles from Ga(A,A∗∗). See a full proof in Appendix A.

Lemma 5. Suppose A is not optimal and A∗ is an optimal assignment
such that Ga(A,A∗) is acyclic. Then we can have a sequence of agreement
graphs Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) such that A1 = A, Ak =
A∗, and the cost is non-increasing every step.

Proof. Consider the agreement graph Ga(Ai, A
∗), for i ≥ 1, starting from

A1 = A. In each step, from Ga(Ai, A
∗) to Ga(Ai+1, A

∗), one arc is re-
moved. In Ga(Ai, A

∗), for i ≥ 1, we consider any arc labelled with either
a “−” or an “=” and we execute the move corresponding to this arc.
Through this move, we remove one arc, and thus we do not introduce
any new arcs. However, the +/−/= label of other arcs may change. If
the resulting graph Ga(Ai+1, A

∗) does not contain any more “−” or “=”
arcs, we stop. Otherwise, we repeat the process.

Note that the cost is non-increasing in every step. By the time we stop,
if the resulting graph, say, Ga(Ah, A

∗), does not contain any more arcs,
we have obtained the desired sequence of agreement graphs. Otherwise,
we are left only with “+” labelled arcs in Ga(Ah, A

∗); however, in the
following, we shall show that such a case cannot happen, thus completing
the proof of the lemma.

Firstly, cost(Ah) ≥ cost(A∗) since A∗ is an optimal assignment. Next,
by Lemma 4, Ga(A1, A

∗) is acyclic and the resulting graph Ga(Ah, A
∗) by

removing all “−” and“=” labelled arcs is also acyclic. Thus, inGa(Ah, A
∗),

there must exist at least one vertex with in-degree 0 and one vertex with
out-degree 0. We look at all such (v1, vi) paths in Ga(Ah, A

∗), where v1
has in-degree 0 and vi has out-degree 0. For any such (v1, vi) path, we
show that by executing all moves of the path (i) the overall cost is in-
creasing, and (ii) the labels of all arcs not contained in the (v1, vi) path
remain “+”. After executing all moves of the path, all arcs of the (v1, vi)
path are removed.

(i) Suppose the vertices of the path are [v1, v2, . . . , vi] and `(v1) = x.
As all arcs in (v1, vi) are labelled with “+” (i.e., the cost is increasing),
`(vj) ≥ x, for j > 1. By executing all moves in the path, `(v1) = x − 1,
`(vj) is unchanged, for 1 < j < i, and `(vi) is increased by one. Thus, the
overall cost is increasing.

(ii) We show that the labels of all arcs not contained in the (v1, vi)
path remain “+”. There may be out-going arcs from v1 to other vertices
not in the (v1, vi) path initially labelled by “+”. Before executing all the

10 Burcea, Hon, Liu, Wong, Yau

moves in the (v1, vi) path, the load of all other vertices is at least x as
we assume `(v1) = x. After the move, `(v1) = x − 1 and out-going arcs
from v1 point to vertices with load at least x. Thus, an arc from v1 to any
other vertex denotes a further increase in the cost and the labels of the
arcs do not change. For vertices vj , for 1 < j < i, the load of vj remains
unchanged and thus the labels of the arcs incoming to or outgoing from vj
remain the same. For vi, there may be incoming arcs. Suppose `(vi) = y
before executing all the moves in the (v1, vi) path. Then the load of all
other vertices pointing to vi is at most y and the arcs are labelled by “+”.
After executing all the moves in the (v1, vi) path, `(vi) = y+ 1, and thus
any subsequent moves from vertices pointing to vi cause further increases
in the cost, i.e., the labels do not change.

Thus, the overall cost is increasing. We repeat this process until there
are no more such (v1, vi) paths. We end up with cost(Ak) > cost(A∗),
which contradicts the fact that cost(Ak) = cost(A∗) as Ak = A∗. Thus,
the case where we are left only with “+” labelled arcs in Ga(Ah, A

∗)
cannot happen, and the lemma follows. ut

Lemma 6. If there is no legal-path in the feasible graph G, the corre-
sponding assignment is optimal.

Proof. Suppose by contradiction there is no legal-path in the feasible
graph G, but the corresponding assignment A is not optimal. Let A∗,
A1 = A,A2, . . . Ak = A∗ be the assignments as defined in Lemmas 4 and 5.
Note that each arc in the agreement graph Ga(A1, A

∗) corresponds to an
arc in the feasible graph G (since G captures all possible moves). Because
the sequence of agreement graphs in Lemma 5 only involves removing
arcs, each arc in all of Ga(Ai, A

∗) corresponds to an arc in G.

Suppose Ga(Aj , A
∗) is the first agreement graph in which a “−” la-

belled arc is considered between some timeslots ta and tb. If there is no
such arc, then A is already an optimal solution (since the sequence will be
both non-increasing by Lemma 5 and non-decreasing as no “−” labelled
arc is involved). Otherwise, if there is such an arc in Ga(Aj , A

∗), we show
that there must have existed a legal-path in the feasible graph G, lead-
ing to a contradiction. We denote by `(Ai, t) the load of timeslot t in the
agreement graph Ga(Ai, A

∗). Suppose `(Aj , ta) = x, then `(Aj , tb) ≤ x−2
as the overall energy cost would be decreasing by moving a job from ta to
tb. If `(A1, ta) = x and `(A1, tb) ≤ x− 2 in the original assignment, then
there is a legal-path in G, which is a contradiction. Otherwise, we claim
that there are some timeslots uiy and vkz such that `(A1, uiy) ≥ x and

Scheduling for Electricity Cost in Smart Grid 11

`(A1, vkz) ≤ x − 2, and there is a path from uiy to vkz in G. This forms
a legal-path in G, leading to a contradiction.

To prove the claim, we first consider finding uiy . We first set i0 = j
and ui0 = ta. If `(A1, ui0) ≥ x, we are done. Else, since `(Aj , ui0) = x and
`(A1, ui0) < x, there must be some job that is moved to ui0 before Aj .
Let i1 < i0 be the latest step such that a job is added to ui0 and the job is
moved from ui1 . Note that since this move corresponds to an arc with label
“=”, `(Ai1 , ui1) = x and `(Ai1 , ui0) = x−1. If `(A1, ui1) ≥ x, we are done.
Otherwise, we can repeat the above argument to find ui2 and so on. The
process must stop at some step iy < i0 where `(A1, uiy) ≥ x. Similarly,
we set k0 = j and vk0 = tb, so that we can find a step kz < k0 such that
`(A1, vkz) ≤ x − 2. Recall that since each arc in Ga(A1, A

∗) corresponds
to an arc in the feasible graph G and in all subsequent agreement graphs
we only remove arcs, there is a path from uiy and vkz in G. Therefore, we
have found a legal-path from uiy to vkz in G. ut

By Lemmas 3 and 6 we have the following theorem.

Theorem 1. Our algorithm finds an optimal assignment.

5 Time Complexity

The proofs of the following theorems are given in Appendix A.

Theorem 2. We can find the optimal schedule in O(|J |n(|J |+n)) time.

We consider the special case where each job Ji ∈ J is associated
with an interval of contiguous timeslots Ii = [ρi, δi], for positive integers
ρi ≤ δi, and each job Ji must be assigned to exactly one feasible timeslot
si, for ρi ≤ si ≤ δi.

Theorem 3. We can find the optimal schedule in O(|J |n(log |J |+log n))
time for the special case where the feasible timeslots associated with each
job are contiguous.

References

1. S. Albers. Energy-efficient algorithms. Communication ACM, 53(5):86–96, 2010.
2. Y. Azar. On-line load balancing. In A. Fiat and G. J. Woeginger, editors, Online

Algorithms, volume 1442 of LNCS, pages 178–195. Springer, 1998.
3. S. Caron and G. Kesidis. Incentive-based energy consumption scheduling algo-

rithms for the smart grid. In Proc. IEEE Smart Grid Comm., pages 391–396,
2010.

12 Burcea, Hon, Liu, Wong, Yau

4. C. Chen, K. G. Nagananda, G. Xiong, S. Kishore, and L. V. Snyder. A
communication-based appliance scheduling scheme for consumer-premise energy
management systems. IEEE Trans. Smart Grid, 4(1):56–65, 2013.

5. European Commission. Europen smartgrids technology platform. ftp://ftp.

cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf, 2006.
6. K. Hamilton and N. Gulhar. Taking demand response to the next level. Power

and Energy Magazine, IEEE, 8(3):60–65, 2010.
7. A. Ipakchi and F. Albuyeh. Grid of the future. IEEE Power and Energy Magazine,

7(2):52–62, 2009.
8. L. D. Kannberg, D. P. Chassin, J. G. DeSteese, S. G. Hauser, M. C. Kintner-Meyer,

R. G. Pratt, L. A. Schienbein, and W. M. Warwick. GridWiseTM: The benefits
of a transformed energy system. CoRR, nlin/0409035, Sept. 2004.

9. I. Koutsopoulos and L. Tassiulas. Control and optimization meet the smart power
grid: Scheduling of power demands for optimal energy management. In Proc. e-
Energy, pages 41–50, 2011.

10. R. Krishnan. Meters of tomorrow [in my view]. IEEE Power and Energy Magazine,
6(2):96–94, 2008.

11. H. Li and R. C. Qiu. Need-based communication for smart grid: When to inquire
power price? CoRR, abs/1003.2138, 2010.

12. Z. Li and Q. Liang. Performance analysis of multiuser selection scheme in dynamic
home area networks for smart grid communications. IEEE Trans. Smart Grid,
4(1):13–20, 2013.

13. Lockheed Martin. SEELoadTMSolution. http://www.lockheedmartin.co.uk/us/
products/energy-solutions/seesuite/seeload.html.

14. T. Logenthiran, D. Srinivasan, and T. Z. Shun. Demand side management in smart
grid using heuristic optimization. IEEE Trans. Smart Grid, 3(3):1244–1252, 2012.

15. T. Lui, W. Stirling, and H. Marcy. Get smart. IEEE Power and Energy Magazine,
8(3):66–78, 2010.

16. C. Y. T. Ma, D. K. Y. Yau, and N. S. V. Rao. Scalable solutions of markov games
for smart-grid infrastructure protection. IEEE Trans. Smart Grid, 4(1):47–55,
2013.

17. S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar. Dependable demand
response management in the smart grid: A stackelberg game approach. IEEE
Trans. Smart Grid, 4(1):120–132, 2013.

18. A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich, and R. Schober. Optimal and
autonomous incentive-based energy consumption scheduling algorithm for smart
grid. In Innovative Smart Grid Technologies (ISGT), 2010.

19. REGEN Energy Inc. ENVIROGRIDTMSMART GRID BUNDLE. http://www.

regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/.
20. S. Salinas, M. Li, and P. Li. Multi-objective optimal energy consumption schedul-

ing in smart grids. IEEE Trans. Smart Grid, 4(1):341–348, 2013.
21. Toronto Hydro Corporation. Peaksaver Program. http://www.peaksaver.com/

peaksaver_THESL.html.
22. UK Department of Energy & Climate Change. Smart grid: A more energy-efficient

electricity supply for the UK. https://www.gov.uk/smart-grid-a-more-energy-
efficient-electricity-supply-for-the-uk, 2013.

23. US Department of Energy. The Smart Grid: An Introduction. http://www.oe.

energy.gov/SmartGridIntroduction.htm, 2009.
24. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

In Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
pages 374–382, 1995.

Scheduling for Electricity Cost in Smart Grid 13

A Proofs

A.1 Proof of Lemma 4

Proof. Consider an optimal assignment A∗∗ such thatGa(A,A∗∗) contains
directed cycles. We show that the assignment A∗∗ can be transformed into
an optimal assignment A∗ such that Ga(A,A∗) is acyclic. Recall that each
timeslot is represented by a vertex in Ga(A,A∗∗) and an arc from vertex
s to vertex t labelled by a tuple (Ji, +/−/=) means that Ji is assigned
to timeslot s in assignment A and timeslot t in A∗∗. For every cycle (s, t)
such that s = t in Ga(A,A∗∗), we show that the load of any vertex does
not change after executing all the moves in the cycle. This implies that
the total cost of A∗∗ remains the same after removing all cycles from
Ga(A,A∗∗).

We consider a cycle that contains the vertices [s, v1, v2, . . . , vk, t], for
s = t. There are arcs from s to v1, v1 to v2, and so on, until the last
arc from vk to t = s. An arc denotes the moving of a distinct job each
step. As we move one job from s to v1, `(s) decreases by one and `(v1)
increases by one. However, `(v1) returns to the original value as we move
the respective job from vertex v1 to v2. Thus, `(vi), for 1 ≤ i < k remains
unchanged. As we move the last job from vertex vk to t = s, both `(vk)
and `(s) return to their original value. Obviously, the load of all vertices
remains the same even for cycles of size 2. Thus, the cost of A∗∗ remains
the same after removing all cycles from Ga(A,A∗∗) and we denote the
corresponding agreement graph by Ga(A,A∗). ut

A.2 Proof of Theorem 2

Proof. We add jobs one by one. Each round when we assign the job Ji
to timeslot r, we add arcs (r, w) labelled by Ji for all vertices w that
w ∈ Ii in the feasible graph. By Lemma 1, there is a legal-path starting
from r if there is a legal-path after assigning Ji to timeslot r. When Ji
is assigned to r, we start breadth-first search at r. By Lemma 2, if there
is a node w which can be reached by the search and the number of jobs
assigned to w is two less than the number of jobs assigned to r, it means
that there is a legal-path (r, w). Then we shift the jobs according to the
(r, w) legal-path. After shifting there will be no legal-paths anymore by
Lemma 3. Finally we update the edges of the vertices on the legal-path
in the feasible graph.

Adding Ji to the feasible graph needs O(|Ii|) time. Because |Ii| is at
most the total number of time intervals in T , |Ii| = O(n) where n is

14 Burcea, Hon, Liu, Wong, Yau

the number of timeslots. The BFS takes O(n+ |J |n) time because there
are at most |J |n edges in the feasible graph. If a legal-path exists after
adding Ji and its length is l, the shifting needs O(l) time, which is O(n)
because there are at most n vertices in the legal-path. After the shift,
at most n edges are updated for each shifted job in the feasible graph,
taking a total of O(n2) time. The total time for adding |J | jobs is thus
bounded by O(|J |n(|J |+ n)). ut

A.3 Proof of Theorem 3

Proof (Sketch). For the special case we use data structure techniques for
the speed up. For each timeslot r, we use two balanced binary search
trees to maintain the collection of feasible intervals for the jobs that are
assigned to it. One of these trees keeps ρi for all Jis that are assigned to
timeslot r, and the other keeps δi. When job Ji is shifted from r to w,
ρi and δi will be deleted from the two binary search trees, respectively;
at the same time, ρi and δi will be inserted into the two binary search
trees corresponding to w, respectively. The binary search trees can report
the minimum ρi and the maximum δi for all Ji assigned to r. The two
numbers represent the set of timeslots z in which there is a job currently
assigned to r but can be shifted to z instead. Because of the contiguous
property of the feasible intervals, the set of timeslots is contiguous. We
define this as the directly reachable interval of timeslot ti, denoted by
[αi, βi]. The query time or updating time takes O(log |J |+ log n) time.

We use a simple balanced binary tree structure to support dynamic
range minimum query (RMQ). For a sequence of n numbers, we store the
numbers in the leaves. For each internal node, it maintains the minimum
number in its subtree. The value of the numbers stored in the leaves
may change, and the value stored in the internal nodes on the path from
root to the changed leaf should be updated to reflect this change. The
updating can be done in O(log n) time. This data structure can report
the minimum number in the interval [i, j] in O(log n) time. Using the
same idea, we can have a data structure that supports dynamic range
maximum query.

For each timeslot r we can know the set of timeslots w such that
there exists a path (r, w) using two dynamic range minimum/maximum
query data structures. We maintain a dynamic range minimum query data
structure as described above whose leaves are αi for i ∈ [1, n], and another
dynamic range maximum query data structure whose leaves are βi. Using
the data structures we can query the ending vertices (i.e., timeslots) of all
the paths, with length at most 2, starting from ti by merging the interval

Scheduling for Electricity Cost in Smart Grid 15

[αi, βi] together with the intervals [αj , βj] for each tj ∈ [αi, βi]. We define

the merged interval as [α
(2)
i , β

(2)
i] for timeslot ti (Note that after merging,

we must get a contiguous interval since each merged interval must overlap

with [αi, βi]). By repeating the process, we can get [α
(n−1)
i , β

(n−1)
i], which

is the set of the ending vertices of all the paths of length at most n−1 that
start from ti. This set contains exactly the vertices that are reachable by
ti, and is called the reachable interval of ti, which can be obtained in a
total of O(n log n) time.

Using the dynamic range minimum query data structure we can main-
tain the minimum load in any interval of timeslots by storing the load of
each timeslot. Each time when the shifting occurs on a legal-path (s, t),
the loads of timeslot s and t change, and the load information in the data
structure should be updated. The updating time and query time are both
bounded by O(n(log |J |+ log n)) time.

Now, we are ready to describe a modified algorithm for the job schedul-
ing problem in the special case. For each job Ji, we assign it to the feasible
timeslot ti and update the binary search tree of ti and the dynamic RMQ
data structures for the directly reachable interval [αi, βi] and for the load.

Then, we find the reachable interval [α
(n−1)
i , β

(n−1)
i] of ti. Within this in-

terval, we find the timeslot t with minimum load using the dynamic RMQ
data structure for loads. In case the load of t is 2 fewer than the load of
ti, we can reconstruct one of the legal-paths (ti, t) by using the dynamic
RMQ data structure as follows: Suppose that t > ti. Starting at ti, we
check if t ≤ βi. If so, we use the binary search tree for Ji to choose a
job which can be shifted to timeslot t; else, we choose a job which can
be shifted to βi, and repeat the process to either obtain another job cho-

sen from βi that can be shifted to t (if t ≤ β
(2)
i) or β

(2)
i . This process

establishes a sequence of job shifting along a path from ti to t. Then,
we perform the shift accordingly, and update the binary search trees of
timeslot r in which r is on the (ti, t) path, the dynamic RMQ data struc-
tures for directly reachable intervals of r, and the dynamic RMQ data
structures for loads of ti and t, to reflect this shift.

The time needed for adding Ji into the feasible graph is O(log |J | +
log n). The time for updating information in the dynamic RMQ data
structures is O(log n). Finding the reachable interval takes O(n log n)
time, whereas finding the minimum load t from this interval takes a fur-
ther O(log n) time. Reconstructing a legal-path needs O(n log n) time.
For shifting according to the legal-path it takes O(n log |J |) time to up-
date the binary search trees and O(n log n) time to update the dynamic
RMQ data structures. Thus, the time for adding one job is bounded by

16 Burcea, Hon, Liu, Wong, Yau

O(n(log |J |+log n)), so that adding all the |J | jobs takesO(|J |n(log |J |+
log n)) time. ut

B Figures

s w
t

Ji
s w

t

(a) Case 2-1 before and after assign-
ing job Ji to timeslot s.

J

s

w

t

r

Ji

s

w

t

r

(b) Case 2-2 before and after assign-
ing job Ji to timeslot r.

Fig. 2: The two sub-cases of Case 2 in the proof of Lemma 2

